Otwarty dostęp

Vibration Reduction Design with Hybrid Structures and Topology Optimization

Polish Maritime Research's Cover Image
Polish Maritime Research
Special Issue Title: Marine Processes Studies and Marine Engineering

Zacytuj

1. Asundi A., Choi A. (1997) “Fiber metal laminates: an advanced material for future aircraft.” Journal of Materials processing technology. 63, 384-94.10.1016/S0924-0136(96)02652-0Search in Google Scholar

2. Barsoum R. (2003). “The best of both worlds: hybrid ship hulls use composites and steel.” Amptiac Quart. 7(3), 55-61.Search in Google Scholar

3. BendsOe M., Sigmund O. (2003). “Topology optimization: theory, methods, and applications.” Springer Verlag; 2nd; ISBN 3540429921.Search in Google Scholar

4. BendsOe M. (1989). “Optimal shape design as a material distribution problem.” Struct. Optim, 1:193-202.Search in Google Scholar

5. Blasques J. P., Stolpe M. (2012). “Multi-material topology optimization of laminated composite beam cross sections.” Composite Structures. 94, 3278-3289.10.1016/j.compstruct.2012.05.002Search in Google Scholar

6. Botelho E.C., Campos A.N., Barros E. D. (2006). “Damping behavior of continuous fiber/metal composite materials by the free vibration method.” Composites Part B: engineering. 37, 255-263.Search in Google Scholar

7. Cao J., Grenestedt J., Maroun W. (2007). “Steel truss/ composite skin hybrid ship hull. Part I: Design and analysis.” Composites Part A-Applied Science and Manufacturing. 38(7), 1755-1762.Search in Google Scholar

8. Cherkaev A. (2012). “Optimal three-material wheel assemblage of conducting and elastic composites.” International Journal of Engineering Science. 59, 27-39.10.1016/j.ijengsci.2012.03.007Search in Google Scholar

9. Coelho P. G., Cardoso J. B ., Fernandes P. R., etc. (2011). “Parallel computing techniques applied to the simultaneous design of structure and material.” Advances in Engineering Software. 42, 219-227.10.1016/j.advengsoft.2010.10.003Search in Google Scholar

10. Hidde J., Herakovich C. (1992). “Inelastic response of hybrid composite laminates.” Journal of Composite Materials. 26, 2-19.10.1177/002199839202600101Search in Google Scholar

11. Kawai M., Morishita M., Tomura S. (1998). “Inelastic behavior and strength offiber-metal hybrid composite.” International journal of Mechanical Sciences. 40, 183-198.10.1016/S0020-7403(97)00048-9Search in Google Scholar

12. Kravanja S., Siliha S., Kravanja Z. (2005). “The multilevel MINLP optimization approach to structural synthesis: the simultaneous topology, material, standard and rounded dimension optimization.” Advances in Engineering Software. 36, 568-58310.1016/j.advengsoft.2005.03.004Search in Google Scholar

13. Lee E., Martins J. R. R. A. (2012). “Structural topology optimization with design-dependent pressure loads.” Computer Methods in Applied Mechanics and engineering. 233, 40-48.10.1016/j.cma.2012.04.007Search in Google Scholar

14. Pan J., Wang D. Y. (2006) “Truss topology optimization under dynamic constraints.” Vibration and Shock. 25 (4), 8-12.Search in Google Scholar

15. Rahul, G. S., Chakraborty D., Dutta A. (2006). “Multiobjective optimization of hybrid laminates subjected to transverse impact.” Composite Structures. 73, 360-369.10.1016/j.compstruct.2005.02.008Search in Google Scholar

16. Rakshit S., Ananthasuresh, G. K. (2008). “Simultaneous material selection and geometry design of statically determinate trusses using continuous optimization.” Structure and Multidisciplinary Optimization. 35, 55-68.Search in Google Scholar

17. Sigmund O., Torquato A. S. (1999). “Design of smart composite materials using topology optimization.” Smart Material & Structures. 8, 365-379.10.1088/0964-1726/8/3/308Search in Google Scholar

18. Sui Y. K., Yang D. Q. (1998). “A new method for structural topological optimization based on the concept of independent continuous variables and smooth model.” Acta Mechanica Sinica (English Edition). 18(2), 179-185.Search in Google Scholar

19. Sun X., Yang F., Xie J., Huang Y. M., Zuo X. (2011). “Topology Optimization of Composite Structure Using Bi-Directional Evolutionary Structural Optimization Method.” Procedia Engineering. 14, 2980-2985.10.1016/j.proeng.2011.07.375Search in Google Scholar

20. Xie X. L. (2011). “Key technologies on design and analysis of deepsea ROV and hybrid structures”. Master Degree Thesis, Shanghai. Shanghai Jiao Tong University.Search in Google Scholar

21. Xie Y. M., Steven G P. (1997). “Evolutionary structural optimization.” Berlin, Heidelberg, New York: Springer.10.1007/978-1-4471-0985-3Search in Google Scholar

22. Xing X. L., Wang M. Q., Song D. (2005). “Study on vibration characteristic of flexible basement floating raft vibration-isolation system.” Mechanical Science and Technology. 2005-07.Search in Google Scholar

23. Xiong Y.P., Song K.J., Wang C., Han Y.C. (1996). “Power flow analysis for a new isolation system flexible floating raft.” Chinese Journal of Mechanical Engineering. 9, 260-264.Search in Google Scholar

24. Yang D. Q., Xie X. L., Chen W. (2012). “Laminate component method for hybrid structure optimal design on vibration reduction.” Ships and Offshore Structures. 7(3), 321-332.10.1080/17445302.2011.592357Search in Google Scholar

25. Yu L. B. (2007). “Research on Vibration Isolation Characteristics of the Floating Raft and Topology Optimization of Raft Body.” Wuhan P.R.China. Huazhong University of Science and Technology. Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences