Otwarty dostęp

Numerical Model of SO2 Scrubbing with Seawater Applied to Marine Engines


Zacytuj

1. Lamas, M.I.; Rodríguez, C.G.; Telmo, J.; Rodríguez, J.D. Numerical analysis of emissions from marine engines using alternative fuels. Submitted to Polish Maritime Research.Search in Google Scholar

2. Zhang, D.N.; Chen, Q.Z.; Zhao, Y.X.; Maeda, Y.; Tsujino, Y. Stack gas desulfurization by seawater in Shanghai. Water, Air & Soil Pollution, vol. 130, pp. 271-276, 2001.10.1023/A:1013879622942Search in Google Scholar

3. Oikawa, K.; Yongsiri, C.; Takeda, K.; Harimoto, T. Environmental Progress, vol. 22, pp. 67-73, 2003.10.1002/ep.670220118Search in Google Scholar

4. Williams, P.J. Use of seawater as makeup water for wet flue gas desulfurization systems. EPRI-DOE-EPA Combined Utility Air Pollution Control Symphosium, August 16-20. Atlanta, Georgia, USA, 1999.Search in Google Scholar

5. Sun, X.; Meng, F.; Yang, F. Application of seawater to enhance SO2 removal from simulated flue gas through hollow fiber membrane contactor. Journal of Membrane Science, vol. 312, pp. 6-14, 2008.10.1016/j.memsci.2007.12.011Search in Google Scholar

6. Darake, S.; Rahimi, A.; Hatamipour, M.S.; Hamzeloui, P. SO2 removal by seawater in a packed-bed tower: experimental study and mathematical modelling. Separation Science and Technology, vol. 49, pp. 988-998, 2014.10.1080/01496395.2013.872660Search in Google Scholar

7. Caiazzo, G.; Langella, G.; Miccio, F.; Scala, F. An experimental investigation on seawater SO2 scrubbing for marine application. Environmental Progress & Sustainable Energy, vol. 32, pp. 1179-1186, 2013.Search in Google Scholar

8. Andreasen, A.; Mayer, S. Use of seawater scrubbing for SO2 removal from marine engine exhaust gas. Energy & Fuels, vol. 21, pp. 3274-3279, 2007.Search in Google Scholar

9. Sukheon, A.; Nishida, O. New application of seawater and electrolyze seawater in air pollution control of marine diesel engine. JMSE International Journal, Series B: Fluids and Thermal Engineering, vol. 46, pp. 206-213, 2003.10.1299/jsmeb.46.206Search in Google Scholar

10. Sverdrup, H. U.; Johnson, M. W.; Fleming, R. H. The Oceans Their Physics, Chemistry, and General Biology; Prentice-Hall: New York, 1942.Search in Google Scholar

11. Dickson, A. G.; Goyet, C., Eds.; Handbook of Methods for the Analysis of the various Parameters of the Carbon Dioxide System in Sea Water, Version 2, ORNL/CDIAC-74; U.S. Department of Energy: Washington, DC, 1994.10.2172/10107773Search in Google Scholar

12. Sander, R. Henry’s Law Constants. In NIST Chemistry Webbook; NIST Standard Reference Database Number 69; Linstrom P. J., Mallard W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, 2005.Search in Google Scholar

13. Ranz, W.E.; Marshall, W.R. Evaporation from drops, Chemical Engineering Progress, vol. 48, pp. 141-146, 1952.Search in Google Scholar

14. Kuiken, K. (2008): Diesel engines for ship propulsion and power plants from 0 to 100000 kW. 1st Edition. The Netherlands: Target Global Energy Training.Search in Google Scholar

15. Woodyard, D. Pounder’s marine diesel engines and gas turbines. 9th Edition. Oxford. Elsevier, 2009.10.1016/B978-0-7506-8984-7.00031-XSearch in Google Scholar

16. Lamas, M.I.; Rodríguez, C.G. CFD analysis of the scavenging process in the MAN B&W 7S50MC two-stroke diesel marine engine. Journal of Ship Research, vol. 56(3), pp. 154–161, 2012.10.5957/JOSR.56.3.120001Search in Google Scholar

17. Lamas, M.I.; Rodríguez, C.G.; Rebollido, J.M. Numerical model to study the valve overlap period in the Wärtsilä 6L46 four-stroke marine engine. Polish Maritime Research, vol.18, pp. 31-37, 2012.10.2478/v10012-012-0004-8Search in Google Scholar

18. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Numerical analysis of several port configurations in the Fairbanks-Morse 38D8-1/8 opposed piston marine engine. Brodogradnja, vol. 66, no. 1, pp. 1-11, 2015.Search in Google Scholar

19. Lamas, M.I.; Rodríguez, C.G. Numerical model to study the combustion process and emissions in the Wärtsilä 6L 46 four-stroke marine engine. Polish Maritime Research, vol. 20, pp. 61-66, 2013.10.2478/pomr-2013-0017Search in Google Scholar

20. Lamas, M.I.; Rodríguez, C.G.; Aas, H.P. Computational fluid dynamics analysis of NOx and other pollutants in the MAN B&W 7S50MC marine engine and effect of EGR and water addition. International Journal of Maritime Engineering, vol. 155, Part A2, pp. A81-A88, 2013.10.3940/rina.ijme.2013.a2.256Search in Google Scholar

21. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Internal modifications to reduce pollutant emissions from marine engines. A numerical approach. Journal of Naval Architecture and Marine Engineering, vol. 5(4), pp. 493-501, 2013.10.2478/IJNAOE-2013-0148Search in Google Scholar

22. Lamas, M.I.; Rodríguez, C.G.; Rodríguez, J.D.; Telmo, J. Computational fluid dynamics of NOx reduction by ammonia injection in the MAN B&W 7S50MC marine engine. International Journal of Maritime Engineering, vol. 156, Part A3, pp. A213-A220, 2014.10.3940/rina.ijme.2014.a3.286Search in Google Scholar

eISSN:
2083-7429
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences