1. bookTom 34 (2015): Zeszyt 329 (December 2015)
    Rural Sustainability Research
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2256-0939
Pierwsze wydanie
30 Aug 2012
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Leachates of Thermally Modified Pine (Pinus sylvestris L.) Wood

Data publikacji: 19 Jan 2016
Tom & Zeszyt: Tom 34 (2015) - Zeszyt 329 (December 2015)<br/>Rural Sustainability Research
Zakres stron: 26 - 31
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2256-0939
Pierwsze wydanie
30 Aug 2012
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

During the last decades, thermally modified wood has become an object of interest among the wood scientists as an environmentally friendly material, because nowadays environmental aspects of materials have become more and more significant. Leaching is one of the processes that occurs in outdoor use. The aim of this study was to evaluate concentration of potentially hazardous substances in leachates of thermally modified pine wood. Scots pine (Pinus sylvestris L.) wood was thermally modified using Wood Treatment Technology (WTT) company device at 170 °C for 1 hour (TMP170/1) and at 160 °C for 3 hours (TMP160/3) and the mass loss was calculated. Material preparation and leaching procedure was made according to standard LVS EN 84:2000. In obtained leachates, the content of sugars, acetic acid, furfural and tannic acid were determined. Results showed that the total wood mass loss was 7.1 ± 1.4% (n=20) for TMP170/1 and 4.0 ± 1.6% (n=20) for TMP160/3. The initial leaching velocity differs between both modes and is higher for TMP160/3. The velocity decreases exponentially with immersion time and reaches plateau after 7th (5 days) immersion, but leaching still continues after the 9th immersion (14 days). The main components in leachates were tannic acid and pentoses. Among all studied compounds furfural is the hardest leachable one. Thermally modified wood treated at TMP170/1 is more environmentally friendly due to less water leachable substances. It is worth looking forward by investigating volatile organic compounds emissions in the air as it also could give high impact on human health.

Keywords

1. Boonstra, M. J., Acker, J., Kegel, E., & Stevens, M. (2006). Optimisation of a two-stage heat treatment process: durability aspects. Wood Science and Technology, 41(1), 31–57. Retrieved August 15, 2014, from Springerlink database on the World Wide Web: http://link.springer.com/10.1007/s00226-006-0087-4. DOI:10.1007/s00226-006-0087-4.10.1007/s00226-006-0087-4Search in Google Scholar

2. Brito, J.O., Silva, F. G., Leão, M. M., & Almeida, G. (2008). Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresource Technology, 99, 8545-8548. Retrieved May 27, 2015, from PubMed database on the World Wide Web: http://www.ncbi.nlm.nih.gov/pubmed/18586488. DOI: 10.1016/j.biortech.2008.03.069.10.1016/j.biortech.2008.03.06918586488Search in Google Scholar

3. Esteves, B., Marques, A. V., Domingos, I., & Pereira, H. (2007). Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptys globulus) wood. Wood Science and Technology, 41, 193-207. Retrieved August 15, 2014, from Springerlink database on the World Wide Web: http://link.springer.com/10.1007/s00226-006-0099-0. DOI:10.1007/s00226-006-0099-0.10.1007/s00226-006-0099-0Search in Google Scholar

4. Esteves, B., & Pereira, H. (2008). Wood modification by heat treatment: a review. BioResources, 4(1), 370–404. Retrieved August 24, 2014, from BioResources database on the World Wide Web: http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_04_1_%23%23%23%23_Esteves_P_Wood_Mod_Heat_Treatment. DOI:10.15376/biores.4.1.370-404.10.15376/biores.4.1.370-404Search in Google Scholar

5. European Commission. (2014, August). European Platform on Life Cycle Assessment (LCA). Retrieved August 24, 2014, from http://ec.europa.eu/environment/ipp/lca.htm.Search in Google Scholar

6. Ferreira, J., Esteves, B., Nunes, L. & Domingos, I. (2014). Life cycle assessment of thermally treated and untreated maritime pine boards: a Portuguese case study. In European Conference on Wood Modification, 10-12 March 2014. Lisbon, Portugal: Laboratório Nacional de Engenharia Civil.Search in Google Scholar

7. Finnish ThermoWood Association. (2008). Executive summary - Thermowood®: Life cycle assessment. Espoo: Publishing House Koivuniemi Ltd.Search in Google Scholar

8. Graf, N., Wagner, S., Begander, U., Trinkaus, P. & Boechzelt, H. (2005). Gaseous emissions from thermal wood modification as a source for fine chemicals recovery. Graz: Joanneum Research GmbH.Search in Google Scholar

9. International ThermoWood Association. (2003). Handbook. Helsinki, Finnland: Wood Focus Oy.Search in Google Scholar

10. Kamdem, D.P., Pizzi, A. & Triboulot, M.C. (2000). Heat-treated timber: potentially toxic byproducts presence and extent of wood cell wall degradation. Holz als Roh- und Werkstoff, 58(4), 253–257. Retrieved August 24, 2014, from Springerlink database on the World Wide Web: http://link.springer.com/10.1007/s001070050420. DOI:10.1007/s001070050420.10.1007/s001070050420Search in Google Scholar

11. Karlsson, O., Torniainen, P., Dagbro, O., Granlund, K. & Moren, T. (2012). Presence of water-soluble compounds in thermally modified wood: carbohydrates and furfurals. BioResources, 7(3), 3679–3689. Retrieved August 24, 2014, from BioResources database on the World Wide Web: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_3_3679_Karlsson_TDGM_Water_Soluble_Cmpds_Thermal_Modified_Wood. DOI:10.15376/biores.7.3.3679-3689.Search in Google Scholar

12. Korkut, S., Akgül, M. & Dündar, T. (2008). The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology, 99(6), 1861–1868. Retrieved October 10, 2013, from PubMed database on the World Wide Web:http://www.ncbi.nlm.nih.gov/pubmed/17482811. DOI:10.1016/j.biortech.2007.03.038.10.1016/j.biortech.2007.03.03817482811Search in Google Scholar

13. LVS EN 84:2000. Wood preservatives - Accelerated ageing of treated wood prior to biological testing - Leaching procedure. Riga: Latvian Standard.Search in Google Scholar

14. LVS EN ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. Riga.Search in Google Scholar

15. Metsä-Kortelainen, S. (2011). Differences between sapwood and heartwood of thermally modified Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) under water and decay exposure. Doctoral dissertation, Aalto university, Espoo, Finland. Retrieved May 26, 2015 from the World Wide Web: http://www.vtt.fi/inf/pdf/publications/2011/P771.pdf.Search in Google Scholar

16. Peters, J., Fischer, K., & Fischer, S. (2008). Characterization of emissions of thermally modified wood and their reduction by chemical treatment. BioResources. 3(2), 491-52. Retrieved August 26, 2014, from BioResources database on the World Wide Web: http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_03_2_0491_Peters_FF_Emissions_Thermal_Wood. DOI:10.15376/biores.3.2.491-502.Search in Google Scholar

17. Srinivas, K. & Pandey, K. K. (2012). Photodegradation of thermally modified wood. Journal of Photochemistry and Photobiology B: Biology, 117, 140–145. Retrieved May 28, 2014, from PubMed database on the World Wide Web: http://www.ncbi.nlm.nih.gov/pubmed/23123593. DOI:10.1016/j.jphotobiol.2012.09.03.Search in Google Scholar

18. Vetter, L., Depraetere, G., Janssen, C., Stevens, M. & Van Acker, J. (2008). Methodology to assess both the efficacy and ecotoxicology of preservative-treated and modified wood. Annals of Forest Science, 65(5), 504–504. Retrieved August 24, 2014, from Springerlink database on the World Wide Web: http://link.springer.com. DOI:10.1051/forest:2008030.10.1051/forest:2008030Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo