Otwarty dostęp

Equilibrium and kinetics studies for the adsorption of Ni2+ and Fe3+ ions from aqueous solution by graphene oxide


Zacytuj

1. Pang, F.M., Teng, S.P., Teng, T.T. & Mohd Omar, A.K. (2009). Heavy Metals Removal by Hydroxide Precipitation and Coagulation-Flocculation Methods from Aqueous Solutions. Water Qual. Res. J. Can. 44(2), 174–182.10.2166/wqrj.2009.019Search in Google Scholar

2. Amuda, O., Amoo, I., Ipinmoroti, K. & Ajayi, O. (2006). Coagulation/flocculation process in the removal of trace metals present in industrial wastewater. J. Appl. Sci. Environ. Mgt. 10 (3), 159–162. http://dx.doi.org/10.4314/jasem.v10i3.1733910.4314/jasem.v10i3.17339Open DOISearch in Google Scholar

3. Vaaramaa, K. & Lehto, J. (2003). Removal of metals and anions from drinking water by ion exchange. Desalination 155, 157–170. DOI: 10.1016/S0011-9164(03)00293-5.10.1016/S0011-9164(03)00293-5Open DOISearch in Google Scholar

4. Blocher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N.K. & Matis, K.A. (2003). Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater. Water Res. 37, 4018–4026. http://dx.doi.org/10.1016/S0043-1354(03)00314-210.1016/S0043-1354(03)00314-2Open DOISearch in Google Scholar

5. da Silva, J.R.P., Mercon, F., Costa, C.M.G. & Benjo, D.R. (2016). Application of reverse osmosis process associated with EDTA complexation for nickel and copper removal from wastewater. Desalin. Water Treat. 57(41), 19466–19474. http://dx.doi.org/10.1080/19443994.2015.110055410.1080/19443994.2015.1100554Open DOISearch in Google Scholar

6. Bertazzoli, R., Widner, R.C., Lanza, M.R.V., Di Iglia, R.A. & Sousa, M.F.B. (1997). Electrolytic Removal of Metals Using a Flow-Through Cell with a Reticulated Vitreous Carbon Cathode. J. Braz. Chem. Soc. 8(5), 487–493. http://dx.doi.org/10.1590/S0103-5053199700050000910.1590/S0103-50531997000500009Open DOISearch in Google Scholar

7. Laus, R., Costa, T.G., Szpoganicz, B. & Favere, V.T. (2010). Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J. Hazard. Mater. 183, 233–241. http://dx.doi.org/10.1016/j.jhazmat.2010.07.01610.1016/j.jhazmat.2010.07.016Open DOISearch in Google Scholar

8. Prabakaran, R. & Arivoli, S. (2012). Adsorption kinetics, equilibrium and thermodynamic studies of Nickel adsorption onto Thespesia Populnea bark as biosorbent from aqueous solutions. Euro. J. Appl. Eng. Sci. Res. 1(4), 134–142.Search in Google Scholar

9. Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. B97, 49–57. DOI: 10.1016/s0304-3894(02)00237-6.10.1016/s0304-3894(02)00237-6Open DOISearch in Google Scholar

10. Ravichandran, T. & Arivoli, S. (2013). Adsorption of Fe (III) Ions by Activated Calcite Powder-Equilibrium, Kinetic and Thermodynamics Studies. J. Pharm. Biomed. Res. 2(1), 52–59.Search in Google Scholar

11. Yang, S., Li, J., Shao, D., Hu, J. & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.10.1016/j.jhazmat.2008.11.00319097690Open DOISearch in Google Scholar

12. Otun, J.A., Oke, I.A., Olarinoye, N.O., Adie, D.B. & Okuofu, C.A. (2006). Adsorption isotherms of Pb(II), Ni(II) and Cd(II) ions onto PES. J. Appl. Sci. 6(11), 2368–2376. DOI: 10.3923/jas.2006.2368.2376.10.3923/jas.2006.2368.2376Open DOISearch in Google Scholar

13. Rao, M., Parwate, A.V. & Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22, 821–830. http://dx.doi.org/10.1016/S0956-053X(02)00011-910.1016/S0956-053X(02)00011-9Open DOISearch in Google Scholar

14. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140. DOI: 10.1016/j.seppur.2005.11.016.10.1016/j.seppur.2005.11.016Open DOISearch in Google Scholar

15. Öztaş, N.A., Karabakan, A. & Topal, Ö. (2008). Removal of Fe(III) ion from aqueous solution by adsorption on raw and treated clinoptilolite samples. Micropor. Mesopor. Mat. 111, 200–205. DOI: 10.1016/j.micromeso.2007.07.030.10.1016/j.micromeso.2007.07.030Open DOISearch in Google Scholar

16. Hashemian, S., Hosseini, S.H., Salehifar, H. & Salari, K. (2013). Adsorption of Fe(III) from Aqueous Solution by Linde Type-A Zeolite. Am. J. Anal. Chem. 4, 123–126. http://dx.doi.org/10.4236/ajac.2013.47A01710.4236/ajac.2013.47A017Search in Google Scholar

17. Bhattacharyya, K.G. & Gupta, S.S. (2006). Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Adsorption 12, 185–204. DOI: 10.1007/s10450-006-0145-0.10.1007/s10450-006-0145-0Open DOISearch in Google Scholar

18. Li, Y., Hu, X., Ren, B. & Wang, Z. (2016). Removal of High-Concentration Fe(III) by Oxidized Multiwall Carbon Nanotubes in a Fixed Bed Column. Am. Chem. Sci. J. 10(3), 1–9. DOI: 10.9734/ACSJ/2016/21692.10.9734/ACSJ/2016/21692Open DOISearch in Google Scholar

19. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W. & Tour, J.M. (2010). Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814. DOI: 10.1021/nn1006368.10.1021/nn100636820731455Open DOISearch in Google Scholar

20. Sykuła-Zając, A., Turek, M., Mathew, M.P., Patai, F., Horvat, M. & Jabłońska, J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Sci. Bull. Tech. Univ. Lodz. Food Chem. Biotechnol. 74(1081), 5–11.Search in Google Scholar

21. ISO 6332:1988. Water quality. Determination of iron. Spectrometric method using 1,10-phenanthroline.Search in Google Scholar

22. Estévez-Martínez, Y., Velasco-Santos, C., Martínez-Hernández, A.L., Delgado, G., Cuevas-Yáńez, E., Alaníz-Lumbreras, D., Duron-Torres, S. & Castańo, V.M. (2013). Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. J. Nanomater. 2013, 1–9. http://dx.doi.org/10.1155/2013/70215710.1155/2013/702157Open DOISearch in Google Scholar

23. Chen, J., Chen, Q., Ma, Q., Li, Y. & Zhu, Z. (2012). Chemical treatment of CNTs in acidic KMnO4 solution and promoting effects on the corresponding Pd-Pt/CNTs catalyst. J. Mol. Catal. A: Chem. 356, 114–120. DOI: 10.1016/j.molcata.2011.12.032.10.1016/j.molcata.2011.12.032Open DOISearch in Google Scholar

24. Kyzas, G.Z., Travlou, N.A., Kalogirou, O. & Deliyanni, E.A. (2013). Magnetic Graphene Oxide: Effect of Preparation Route on Reactive Black 5 Adsorption. Materials 6, 1360–1376. DOI: 10.3390/ma6041360.10.3390/6041360Open DOISearch in Google Scholar

25. Chen, J., Zhu, Z.H., Ma, Q., Li, L., Rudolph, V. & Lu, G.Q. (2009). Effects of pretreatment in air microwave plasma on the structure of CNTs and the activity of Ru/CNTs catalysts for ammonia decomposition. Catal. Today 148, 97–102. DOI: 10.1016/j.cattod.2009.02.005.10.1016/j.cattod.2009.02.005Open DOISearch in Google Scholar

26. Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xiaa, Y. & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 91(2), 361–368. DOI: 10.1016/j.cherd.2012.07.007.10.1016/j.cherd.2012.07.007Open DOISearch in Google Scholar

27. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T. & Ruoff, R.S. (2007). Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.10.1016/j.carbon.2007.02.034Open DOISearch in Google Scholar

28. Some, S., Kim, Y., Yoon, Y., Yoo, H.J., Lee, S., Park, Y. & Lee, H. (2013). High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 3, 1–5. DOI: 10.1038/srep01929.10.1038/srep01929366831923722643Open DOISearch in Google Scholar

29. Couzi, M., Bruneel, J.-L., Talaga, D. & Bokobza, L. (2016). A multi wavelength Raman scattering study of defective graphitic carbon materials: The first order Raman spectra revisited. Carbon 107, 388–394. http://dx.doi.org/10.1016/j.carbon.2016.06.01710.1016/j.carbon.2016.06.017Open DOISearch in Google Scholar

30. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A. & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1), 36–41. DOI: 10.1021/nl071822y.10.1021/nl071822y18154315Open DOISearch in Google Scholar

31. Iqbal, M.W., Singh, A.K., Iqbal, M.Z. & Eom, J. (2012). Raman fingerprint of doping due to metal adsorbates on graphene. J. Phys. Condens. Matter. 24, 335301–335307. DOI: 10.1088/0953-8984/24/33/335301.10.1088/0953-8984/24/33/33530122814217Open DOISearch in Google Scholar

32. Lottermoser, B.G. (2010). Mine Wastes. Characterization, Treatment and Environmental Impacts. Springer-Verlag, London, New York.10.1007/978-3-642-12419-8Open DOISearch in Google Scholar

33. Vasu, A.E. (2008). Adsorption of Ni(II), Cu(II) and Fe(III) from Aqueous Solutions Using Activated Carbon. E-J. Chem. 5(1), 1–9. http://dx.doi.org/10.1155/2008/69024110.1155/2008/690241Open DOISearch in Google Scholar

34. Benaisa, S., El Mail, R. & Jbari, N. (2016). Biosorption of Fe (III) from aqueous solution using brown algae Sargassum Vulgare. J. Mater. Environ. Sci. 7(5), 1461–1468.Search in Google Scholar

35. Chairat, M., Rattanaphani, S., Bremner, J.B. & Rattanaphani, V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76, 435–439. DOI: 10.1016/j.dyepig.2006.09.008.10.1016/j.dyepig.2006.09.008Open DOISearch in Google Scholar

36. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4), 351–363.Search in Google Scholar

37. Thamilarasu, P., Sivakumar, P. & Karunakaran, K. (2011). Removal of Ni(II) from aqueous solutions by adsorption onto Cajanus cajan L Milsp seed shell activated carbons. Indian J. Chem. Technol. 18(5), 414–420.Search in Google Scholar

38. Wan Ngah, W.S., Ab Ghani, S. & Kamari, A. (2005). Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technol. 96, 443–450. DOI: 10.1016/j.biortech.2004.05.022.10.1016/j.biortech.2004.05.022Open DOISearch in Google Scholar

39. Deka, L. & Bhattacharyya, K.G. (2015). Batch adsorption studies for iron(III) removal from aqueous solution by sand and charcoal mixture. J. Appl. Fund. Sci. 1(1), 74–80.Search in Google Scholar

40. Taman, R., Ossman, M.E., Mansour, M.S. & Farag, H.A. (2015). Metal Oxide Nano-particles as an Adsorbent for Removal of Heavy Metals. J. Adv. Chem. Eng. 5(3), 1–8. http://dx.doi.org/10.4172/2090-4568.100012510.4172/2090-4568.1000125Open DOISearch in Google Scholar

41. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403.10.1021/ja02242a004Search in Google Scholar

42. Freundlich, H. (1906). Concerning adsorption in solutions. Zeitschrift fur Physikalische Chemie 57, 385–470.Search in Google Scholar

43. Chen, C., Hu, J., Shao, D., Li, J. & Wang, X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164, 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.10.1016/j.jhazmat.2008.08.089Open DOISearch in Google Scholar

44. Kapoor, A. & Viraragavan, T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227. http://dx.doi.org/10.1016/S0960-8524(97)00055-210.1016/S0960-8524(97)00055-2Open DOISearch in Google Scholar

45. Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu, J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.10.1016/j.jhazmat.2009.01.050Open DOISearch in Google Scholar

46. Suemitsu, R., Uenishi, R., Akashi, I. & Kakano, M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31, 75–83. DOI: 10.1002/app.1986.070310108.10.1002/app.1986.070310108Open DOISearch in Google Scholar

47. Al-Rub, F.A.A., Kandah, M. & Aldabaibeh, N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2, 111–116. DOI: 10.1002/1618-2863(200204).10.1002/1618-2863(200204)Open DOISearch in Google Scholar

48. Padmavathy, V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99, 3100–3109. DOI: 10.1016/j.biortech.2007.05.070.10.1016/j.biortech.2007.05.070Open DOISearch in Google Scholar

49. Ho, Y.S., Wase, D.A.J. & Forster, C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29, 1327–1332. http://dx.doi.org/10.1016/0043-1354(94)00236-Z10.1016/0043-1354(94)00236-ZOpen DOISearch in Google Scholar

50. Ewecharoen, A., Thiravetyan, P. & Nakbanpote, W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137, 181–188. DOI: 10.1016/j.cej.2007.04.007.10.1016/j.cej.2007.04.007Open DOISearch in Google Scholar

51. Sharma, Y.C. & Srivastava, V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55, 1441–1442. DOI: 10.1021/je900619d.10.1021/je900619dOpen DOISearch in Google Scholar

52. Meena, A.K., Mishra, G.K., Rai, P.K., Rajgopal, C. & Nagar, P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.10.1016/j.jhazmat.2005.03.02415878798Open DOISearch in Google Scholar

53. Johnson, C.D. & Worrall, F. (2007). Novel granular materials with microcrystalline active surfaces-waste water treatment applications of zeolite/vermiculite composites. Water Res. 4, 2229–2235. http://dx.doi.org/10.1016/j.watres.2007.01.04710.1016/j.watres.2007.01.04717360021Open DOISearch in Google Scholar

54. Kinhikar, V.R. (2012). Removal of Nickel (II) from Aqueous Solutions by Adsorption with Granular Activated Carbon (GAC). Res. J. Chem. Sci. 2(6), 6–11.Search in Google Scholar

55. Yueming Ren, N.Y. (2011). Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175, 1–7. http://dx.doi.org/10.1016/j.cej.2010.08.01010.1016/j.cej.2010.08.010Open DOISearch in Google Scholar

56. Jha, V.K., Matsuda, M. & Miyake, M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 160, 148–153. http://dx.doi.org/10.1016/j.jhazmat.2008.02.10710.1016/j.jhazmat.2008.02.10718417279Open DOISearch in Google Scholar

57. Zhang, X. & Wang, X. (2015). Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10(2), 1–21. http://dx.doi.org/10.1371/journal.pone.011707710.1371/journal.pone.0117077431560125647398Open DOISearch in Google Scholar

58. Quintelas, C., Rocha, Z., Silva, B., Fonseca, B., Figueiredo, H. & Tavares, T. (2009). Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 149, 319–324. DOI: 10.1016/j.cej.2008.11.025.10.1016/j.cej.2008.11.025Open DOISearch in Google Scholar

59. Karthikeyan, G. & Siva Ilango, S. (2008). Equilibrium Sorption studies of Fe, Cu and Co ions in aqueous medium using activated Carbon prepared from Recinius Communis Linn. J. Appl. Sci. Environ. Manage. 12(2), 81–87. http://dx.doi.org/10.4314/jasem.v12i2.5553710.4314/jasem.v12i2.55537Open DOISearch in Google Scholar

60. Ahalya, N., Kanamadi, R.D. & Ramachandra, T.V. (2007). Cr (VI) and Fe (III) removal using Cajanus cajan husk. J. Environ. Biol. 28(4), 765–769.Search in Google Scholar

61. Dai, J., Ren, F.L. & Tao, C.Y. (2012). Adsorption Behavior of Fe(II) and Fe(III) Ions on Thiourea Cross-Linked Chitosan with Fe(III) as Template. Molecules 17, 4388–4399. DOI: 10.3390/molecules17044388.10.3390/17044388Open DOISearch in Google Scholar

62. Sankar, K.R., Venkatraman, B.R. & Arivoli, S. (2013). Equilibrium and Thermodynamics Studies on the Removal of Iron (III) onto Plaster of Paris. Int. J. Eng. Innov. Res. 2(1), 28–33.Search in Google Scholar

63. Moradi, O., Zare, K. & Yari, M. (2011). Interaction of some heavy metal ions with single walled carbon nanotube. Int. J. Nano. Dim. 1(3), 203–220.Search in Google Scholar

64. Salam, M.A., Makki, M.S.I. & Abdelaal, M.Y.A. (2011). Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J. Alloys Compd. 509, 2582–2587. DOI: 10.1016/j.jallcom.2010.11.094.10.1016/j.jallcom.2010.11.094Open DOISearch in Google Scholar

65. Unlu, N. & Ersoz, M. (2007). Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Sep. Purif. Technol. 52, 461–469. DOI: 10.1016/j.seppur.2006.05.026.10.1016/j.seppur.2006.05.026Open DOISearch in Google Scholar

66. Abdus-Salam, N. & Bello, M.O. (2015). Kinetics, thermodynamics and competitive adsorption of lead and zinc ions onto termite mound. Int. J. Environ. Sci. Technol. 12, 3417–3426. DOI: 10.1007/s13762-015-0769-2.10.1007/s13762-015-0769-2Open DOISearch in Google Scholar

67. Salam, M.A. (2013). Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: Kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol. 10, 677–688. DOI: 10.1007/s13762-012-0127-6.10.1007/s13762-012-0127-6Search in Google Scholar

68. Kara, M., Yuzer, H., Sabah, E. & Celik, M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37, 224–232. http://dx.doi.org/10.1016/S0043-1354(02)00265-810.1016/S0043-1354(02)00265-8Open DOISearch in Google Scholar

69. Jaycock, M.J. & Parfitt, G.D. (1981). Chemistry of Interfaces. Ellis Horwood Ltd., Onichester.Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering