Otwarty dostęp

Investigation of Salt and precipitating agent effect on the specific surface area and compressive strength of alumina catalyst support


Zacytuj

1. Trueba, M. & Trasatti, S.P. (2005). γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects, Eur. J. Inorg. Chem. 2005, 3393–3403. DOI: 10.1002/ejic.200500348.10.1002/ejic.200500348Open DOISearch in Google Scholar

2. Faure, R., Rossignol, F., Chartier, T., Bonhomme, C., Getchegoyen, A., Del Gallo, P. & Gary, D. (2010). Alumina foam catalyst supports for industrial steam reforming processes, J. Eurp. Cer. Soc. 31, 303–312. DOI: 10.1016/j.jeurceramsoc.2010.10.009.10.1016/j.jeurceramsoc.2010.10.009Open DOISearch in Google Scholar

3. Mcfarlane, A.R., Silverwood, I.P., Norris, E.L., Ormerod, R.M., Frost, C.D., Parker, S.F. & Lennon, D. (2013). The application of inelastic neutron scattering to investigate the steam reforming of methane over an alumina-supported nickel catalyst, J. Chem. Physics 427, 16577–16589. DOI: 10.1016/j.chemphys.2013.10.012.10.1016/j.chemphys.2013.10.012Open DOISearch in Google Scholar

4. Nakano, K., Ali, S.A., Kim, H.J., Kim, T., Alhooshani, K., Park, J.I. & Mochida, I. (2013). Deep desulfurization of gas oil over NiMoS catalysts supported on alumina coated USY-zeolite, J. Fuel Proc. Technol. 116, 44–51. DOI: 10.1016/j.fuproc.2013.04.012.10.1016/j.fuproc.2013.04.012Open DOISearch in Google Scholar

5. Antoniak, K., Kowalik, P., Próchniak, W., Konkol, M., Wach, A., Kuśtrowski, P. & Ryczkowski, J. (2013). Effect of flash calcined alumina support and potassium doping on the activity of Co–Mo catalysts in sour gas shift process, J. Appl. Catal. 423, 114–120. DOI: 10.1016/j.apcata.2012.02.028.10.1016/j.apcata.2012.02.028Open DOISearch in Google Scholar

6. Rui, Z., Chen, C., Lu, Y. & Ji, H. (2014). Anodic Alumina Supported Pt Catalyst for Total Oxidation of Trace Toluene, Chinese. J. Chem. Eng. 22, 882–887. DOI: 10.1016/j.cjche.2014.06.011.10.1016/j.cjche.2014.06.011Open DOISearch in Google Scholar

7. Valdez, R., Pawelec, B., Quintana, J.M. & Olivas, A. (2012). Effect of the acidity of alumina over Pt, Pd, and Pt–Pd (1:1) based catalysts for 2-propanol dehydration reactions. J. Fuel 105, 688–694. DOI: 10.1016/j.fuel.2012.10.047.10.1016/j.fuel.2012.10.047Open DOISearch in Google Scholar

8. Persson, K., Thevenin, P.O., Jansson, K., Agrell, J., Järås, S.G. & Pettersson, L.J. (2003). Preparation of alumina-supported palladium catalysts for complete oxidation of methane J. Appl. Catal. 249, 165–174. DOI: 10.1016/S0926-860X(03)00193-5.10.1016/S0926-860X(03)00193-5Search in Google Scholar

9. Banga, Y., Hana, S.J., Seob, J.G., Youna, M.H., Songa, J.H. & Songa, I.K. (2012). Hydrogen production by steam reforming of liquefied natural gas (LNG) over ordered mesoporous nickel–alumina catalyst, Int. J. Hydrogen Energy.38, 17967–17977. DOI: 10.1016/j.ijhydene.2013.05.029.10.1016/j.ijhydene.2013.05.029Open DOISearch in Google Scholar

10. Ganley, J.C., Riechmann, K.L., Seebauer, E.G. & Masel, R.I. (2004). Porous anodic alumina optimized as a catalyst support for microreactors, J. Catal. 227, 26–32. DOI: 10.1016/j.jcat.2004.06.016.10.1016/j.jcat.2004.06.016Search in Google Scholar

11. Yun, S.J. & Seo, Y. (2013). Removal of bacteria and odor gas by an alumina support catalyst and negative air ions. J. Aerosol Sci. 58, 33–40. DOI: 10.1016/j.jaerosci.2012.12.006.10.1016/j.jaerosci.2012.12.006Open DOISearch in Google Scholar

12. Rodrigues, R., Isoda, N., Gonçalves, M., Figueiredo, F.C.A., Mandelli, D. & Carvalho, W.A. (2012). Effect of niobia and alumina as support for Pt catalysts in the hydrogenolysis of glycerol. Chem. Eng. J. 198–199, 457–467. DOI: 10.1016/j.cej.2012.06.002.10.1016/j.cej.2012.06.002Open DOISearch in Google Scholar

13. Garg, A.K. (1996). Firing sol-gel alumina particles, International publication number, Appl. WO1996032226A2.Search in Google Scholar

14. Wakabayashi, M., Ono, T., Togari, O. & Nakamura, M. (1981). Process for the production of alumina suiTable for use as a catalyst carrier, United States Patent, Appl. US4248852 A.Search in Google Scholar

15. Crişan, M., Zaharescu, M., Durga, Kumari, V., Subrahmanyam, M., Crişan, D., Drăgan, N., Răileanu, M., Jitianu, M., Usu, R.A., Sadanandam, G. & Krishna Reddy, J. (2011). Sol–gel based alumina powders with catalytic applications, J. Appl. Surf. Sci. 258, 448–455. DOI: 10.1016/j.apsusc.2011.08.104.10.1016/j.apsusc.2011.08.104Open DOISearch in Google Scholar

16. Ginestra, J.M., Ackerman, R.C. & Michel, C.G. (2006). Alumina having bimodal pore structure, catalysts made thereform and process using same, United States Patent, Appl. US6984310 B2.Search in Google Scholar

17. Becker, L.W. & Lukas, J.B. (1989). Manufacture and use of polymer modified aluminum hydroxide and basic aluminum sulfate, United States Patent, Appl. US4826606 A.Search in Google Scholar

18. Bloc, J. & Ville, R. (1987). Dispersible alpha alumina monohydrate having increased viscosifying properties, United States Patent, Appl. US4584108 A.Search in Google Scholar

19. Papayannakos, N.G., Thanos, A.M. & Kaloidas, Y.E. (1993). Effect of seeding during precursor preparation on the pore structure of alumina catalyst supports, J. Microporous Mater. 1, 423–430. DOI: 10.1016/0927-6513(93)80036-T.10.1016/0927-6513(93)80036-Open DOISearch in Google Scholar

20. Da Ros, S., Barbosa-Coutinho, E., Schwaab, M., Calsavara, V. & Fernandes-Machado, N.R.C. (2013). Modeling the effects of calcination conditions on the physical and chemical properties of transition alumina catalysts, J. Mater. Charact. 80, 50–61. DOI: 10.1016/j.matchar.2013.03.005.10.1016/j.matchar.2013.03.005Open DOISearch in Google Scholar

21. Oberlander, K. (1984). Applied Industrial Catalysis, Academic Press, New York, 63.Search in Google Scholar

22. Wefers, K. (1990). Alumina Chemicals: Science and Technology Handbook, Edited by L.D. Hart and E. Lense, The American Ceramic Society, Westerville, Ohio, 13.Search in Google Scholar

23. Ray, J.C., You, K.S., Ahn, J.W. & Ahn, W.S. (2007). Mesoporous alumina (I): Comparison of synthesis schemes using anionic, cationic, and non-ionic surfactants. Micropor. Mesopor. Mater. 100, 183–190. DOI: 10.1016/j.micromeso.2006.10.036.10.1016/j.micromeso.2006.10.036Open DOISearch in Google Scholar

24. Čejka, J., Žilková, N., Rathouský, J. & Zukal, A. (2001). Nitrogen adsorption study of organised mesoporous alumina. Phys. Chem. Chem. Phys. 3, 5076–5081. DOI: 10.1039/B105603B.10.1039/B105603Open DOISearch in Google Scholar

25. Čejka, J., Veselá, L., Rathouský, J. & Zukal, A. (2002). Adsorption of nitrogen on organized mesoporous alumina. Stud. Surf. Sci. Catal. 141, 429–436. DOI: 10.1016/S0167-2991(02)80572-9.10.1016/S0167-2991(02)80572-9Open DOISearch in Google Scholar

26. Kim, Y., Kim. C., Kim. P. & Yi, J. (2005). Effect of preparation conditions on the phase transformation of mesoporous alumina. J. Non-Crystalline Sol. 351, 550–556. DOI: 10.1016/j.jnoncrysol.2005.01.009.10.1016/j.jnoncrysol.2005.01.009Open DOISearch in Google Scholar

27. Valange, S., Guth, J.L., Kolenda, F., Lacombe, S. & Gabelica, Z. (2000). Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Micropor. Mesopor. Mater 35–36, 597–607. DOI: 10.1016/S1387-1811(99)00253-X.10.1016/S1387-1811(99)00253-XOpen DOISearch in Google Scholar

28. Xu, B., Xiao, T., Yan, Z., Sun, X., Sloan, J., González-Cortés, S.L., Alshahrani, F. & Green, M.L.H. (2006). Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system. Micropor. Mesopor. Mater 91, 293–295. DOI: 10.1016/j.micromeso.2005.12.007.10.1016/j.micromeso.2005.12.007Open DOISearch in Google Scholar

29. González-Peña, V., Márquez-Alvarez, C., Sastre, E. & Pérez-Pariente, J. (2001). Improved Thermal Stability of Mesoporous Alumina Support of Catalysts for the Isomerization of Light Paraffins. Stud. Surf. Sci. Catal. 135, 1072–1079. DOI: 10.1016/S0167-2991(01)81400-2.10.1016/S0167-2991(01)81400-2Open DOISearch in Google Scholar

30. Acosta, S., Ayral, A., Guizard, C. & Cot, L. (1996). Synthesis of alumina gels in amphiphilic media. J. Sol-Gel. Sci. Technol. 8, 195–199. DOI: 10.1007/BF02436840.10.1007/BF02436840Search in Google Scholar

31. Zhang, Z. & Pinnavaia, Mesostructured, T.J. (2002). γ-Al2O3 with a Lathlike Framework Morphology. J. Am. Chem. Soc. 124, 12294–12301. DOI: 10.1021/ja0208299.10.1021/ja0208299Open DOISearch in Google Scholar

32. Vaudry, F., Khodabandeh, S. & Davis, M.E. (1996). Synthesis of pure alumina mesoporous materials. Chem. Mater. 8, 1451–1464. DOI: 10.1021/cm9600337.10.1021/cm9600337Search in Google Scholar

33. González-Peña, V., Márquez-Alvarez, C., Sastre, E. & Pérez-Pariente, J. (2002). Synthesis of ordered mesoporous and microporous aluminas: strategies for tailoring texture and aluminum coordination. Stud. Surf. Sci. Catal. 142, 1283–1290. DOI: 10.1016/S0167-2991(02)80291-9.10.1016/S0167-2991(02)80291-9Open DOISearch in Google Scholar

34. González-Peña, V., Márquez-Alvarez, C., Díaz, I., Grande, M., Blasco, T. & Pérez-Pariente, J. (2005). Sol-gel synthesis of mesostructured aluminas from chemically modified aluminum sec-butoxide using non-ionic surfactant templating. Micropor. Mesopor. Mater. 80, 173–182. DOI: 10.1016/j.micromeso.2004.12.011.10.1016/j.micromeso.2004.12.011Open DOISearch in Google Scholar

35. Deng, W., Bodart, P., Pruski, M. & Shanks, B.H. (2002). Characterization of mesoporous alumina molecular sievessyn-thesized by nonionic templating. Micropor. Mesopor.Mater. 52, 169–177. DOI: 10.1016/S1387-1811(02)00315-3.10.1016/S1387-1811(02)00315-3Open DOISearch in Google Scholar

36. Shan, Z., Jansen, J.C., Zhou, W. & Maschmeyer, T. (2003). Al-TUD-1, sTable mesoporous aluminas with high surface areas. Appl. Catal. A: General 254, 339–343. DOI: 10.1016/S0926-860X(03)00480-0.10.1016/S0926-860X(03)00480-0Open DOISearch in Google Scholar

37. Li, W.C., Lu, A.H., Schmidt, W. & Schüth, F. (2005). High surface area, mesoporous, glassy alumina with a controllable pore size by nanocasting from carbon aerogels. Chem.-A Eur. J. 11, 1658–1664. DOI: 10.1002/chem.200400776.10.1002/chem.20040077615669070Open DOISearch in Google Scholar

38. Dey, S.(2014). Synthesis and Application of γ-Alumina Nanopowders, National Institute of Technology, Rourkela, India, 1–17.Search in Google Scholar

39. Liu, C., Liu, Y., Ma, Q. & He, H. (2010). Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis, Chem. Eng. J. 163, 133–142. DOI: 10.1016/j.cej.2010.07.046.10.1016/j.cej.2010.07.046Open DOISearch in Google Scholar

40. Siriwardane, U., Seetala, N.V., Vegesna, N.S., Vudarapu, S. & Luurtsema, K. (2006). Comparison of Fe/Co/Cu metal loading in mesoporous γ-alumina prepared by three sol-gel methods, Submitted to Appl. Catal.: A General, 17.Search in Google Scholar

41. Zhu, H.Y., Riches, J.D. & Barry, J.C. (2002). gamma-alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant. Chem. Mater, 14, 2086–2093. DOI: 10.1021/cm010736a.10.1021/cm010736aOpen DOISearch in Google Scholar

42. González-Peña, V., Díaz, I., Márquez-Alvarez, C., Sastre, E. & Pérez-Pariente, J. (2001). Thermally sTable mesoporous alumina synthesized with non-ionic surfactants in the presence of amines. Micropor. Mesopor. Mater. 44, 203–210. DOI: 10.1016/S1387-1811(01)00185-8.10.1016/S1387-1811(01)00185-8Open DOISearch in Google Scholar

43. Boissière, C., Nicole, L., Gervais, C., Babonneau, F., Antonietti, M., Amenitsch, H., Sanchez, C. & Grosso, D. (2006). Nanocrystalline mesoporous gamma-alumina powders “UPMC1 material” gathers thermal and chemical stability with high surface area, Chem. Mater. 18, 5238–5243. DOI: 10.1021/cm061489j.10.1021/cm061489jOpen DOISearch in Google Scholar

44. Liu, X., Wei, Y., Jin, D. & Shih, W.H. (2000). Synthesis of mesoporous aluminum oxide with aluminum alkoxide and tartaric acid. Mater. Lett. 42, 143–149. DOI: 10.1016/S0167-577X(99)00173-1.10.1016/S0167-577X(99)00173-1Open DOISearch in Google Scholar

45. Ren, T.Z., Yuan, Z.Y. & Su, B.L. (2004). Microwave-assisted preparation of hierarchical mesoporous-macroporous-boehmite AlOOH and gamma-Al2O3. Langmuir 20, 1531–1534. DOI: 10.1021/la0361767.10.1021/la036176715803747Open DOISearch in Google Scholar

46. Yada, M., Hiyoshi, H., Ohe, K., Machida, M. & Kijima, T. (1997). Synthesis of aluminum-based surfactant mesophases morphologically controlled through a layer to hexagonal transition. Inorg. Chem. 36, 5565–5569. DOI: 10.1021/ic970292d.10.1021/ic970292dOpen DOISearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering