Otwarty dostęp

3D CFD fluid flow and thermal analyses of a new design of plate heat exchanger


Zacytuj

1. Khan, T.S., Khan, M.S., Chyu, M.C. & Ayub, Z.H. (2010). Experimental investigation of single phase convective heat transfer coeffi cient in a corrugated plate heat exchanger for multiple plate confi gurations, Appl. Ther. Engine. 30, 1058-1065. DOI: 10.1016/j.applthermaleng.2010.01.021.10.1016/j.applthermaleng.2010.01.021Search in Google Scholar

2. Gherasim, I., Taws, M., Galanis, N. & Nguyen, C.T. (2011). Heat transfer and fl uid fl ow in a plate heat exchanger part I. Experimental investigation. Inter. J. Ther. Sci. 50, 1492-1498. DOI: 10.1016/j.ijthermalsci.2011.03.018.10.1016/j.ijthermalsci.2011.03.018Search in Google Scholar

3. Kraus, A.D., Aziz, A. & Welty, J. (2007). Extended surface heat transfer. John Wiley & Sons, Inc. DOI: 10.1002/978047017582.Search in Google Scholar

4. Abu-Khader, M.M. (2012). Plate heat exchangers: recent advances. Renew. Sustain. Ener. Rev. 16, 1883-1891. DOI: 10.1016/j.rser.2012.01.009.10.1016/j.rser.2012.01.009Search in Google Scholar

5. Arie, M.A., Shooshtari, A.H., Dessiatoun, S.V., Al-Hajri, E. & Ohadi, M.M. (2015). Numerical modeling and thermal optimization of a single phase fl ow manifold microchannel plate heat exchanger, Inter. J. Heat Mass Trans. 81, 478-489. DOI: 10.1016/j.ijheatmasstransfer.2014.10.022.10.1016/j.ijheatmasstransfer.2014.10.022Search in Google Scholar

6. Goodarzi, M. & Nouri, E. (2016). A new double-pass parallel-plate heat exchanger with better wall temperature uniformity under uniform heat fl ux. Inter. J. Ther. Sci. 102, 137-144. DOI: 10.1016/j.ijthermalsci.2015.11.012.10.1016/j.ijthermalsci.2015.11.012Search in Google Scholar

7. Kim, G.W., Lim, H.M. & Rhee, G.H. (2016). Numerical studies of heat transfer enhancement by cross-cut fl ow control in wavy fi n heat exchanger, Inter. J. Heat Mass Trans. 96, 110-117. DOI: 10.1016/j.ijheatmasstransfer.2016.01.023.10.1016/j.ijheatmasstransfer.2016.01.023Search in Google Scholar

8. Yaici, W., Ghorab, M. & Entchev, E. (2014). 3D CFD analysis of the effect of inlet air fl ow maldistribution on the fl uid fl ow and heat transfer performances of plate-fi n-andtube laminar, heat exchangers, Inter. J. Heat Mass Trans. 74, 490-500. DOI: 10.1016/j.ijheatmasstransfer.2014.03.034.10.1016/j.ijheatmasstransfer.2014.03.034Search in Google Scholar

9. Vafajoo, L., Moradifar, K., Hosseini, S.M. & Salman, B.H. (2016). Mathematical modelling of turbulent fl ow for fl ue gas-air Chevron type plate heat exchangers. Inter. J. Heat Mass Trans. 97, 596-602. DOI: 10.1016/j.ijheatmasstransfer.2016.02.035.10.1016/j.ijheatmasstransfer.2016.02.035Search in Google Scholar

10. Shah, R.K. & Sekulic, D.P. (2007). Fundamentals of heat exchanger design, John & Sons, Inc., ISBN: 0-471-32171-0.Search in Google Scholar

11. Wakui, T. & Yokoyama, R. (2008). Online model based performance monitoring of a shell and tube type heat exchanger using steam and water. Ener. Conv. Manage. 49, 2669-2677. DOI: 10.1016/j.enconman.2008.04.009.10.1016/j.enconman.2008.04.009Search in Google Scholar

12. Tao, W.Q., Cheng, Y.P. & Lee, T.S. (2007). 3D numerical simulation on fl uid fl ow and heat transfer characteristics in multistage heat exchanger with slit fi ns. Heat Mass Trans. 44, 125-136. DOI: 10.1007-s00231-0060-0227-2.10.1007/s00231-006-0227-2Search in Google Scholar

13. Luan, Z.J., Zhang, G.M., Tian, M.Ch. & Fan, M.X. (2008). Flow resistance and heat transfer characteristics of a new type plate heat exchanger. J. Hydro. 20, 4, 524-529.10.1016/S1001-6058(08)60089-XSearch in Google Scholar

14. Giurgiu, O., Plesa, A. & Socaciu, L. (2016). Plate heat exchangers - fl ow analysis through mini channels. Ener. Proc. 85, 244-251. DOI: 10.1016/j.egypro.2015.12.236.10.1016/j.egypro.2015.12.236Search in Google Scholar

15. Andhare, R.S., Shooshtari, A., Dessiatoun, S.V. & Ohadi, M.M. (2016). Heat transfer and pressure drop characteristics of a fl at plate manifold microchannel heat exchanger in counter fl ow confi guration. Appl. Ther. Engine. 96, 178-189. DOI: 10.10116/j.aapthermaleng.2015.10.133.Search in Google Scholar

16. Rios-Iribe, E.Y., Cervantes-Gaxiola, M.E., Rubio-Castro, E. & Hernadez-Calderon, O.M. (2016). Heat transfer analysis of a non-Newtonian fl uid fl owing through a plate heat exchanger using CFD. Appl. Ther. Engine. DOI: 10.1016/j.applthermaleng. 2016.02.094.Search in Google Scholar

17. Dvorak, V. & Vit, T. (2015). Numerical investigation of counter fl ow plate heat exchanger. Ener. Proc. 83, 341-349. DOI: 10.1016/j.egypro.2015.12.188.10.1016/j.egypro.2015.12.188Search in Google Scholar

18. ANSYS Inc. Fluent 15.0, User’s guide, ANSYS Inc. Houston, TX, 2015.Search in Google Scholar

19. Internal report from sunfi re, 2015.Search in Google Scholar

20. Bhatti, M.S. & Shah, R.K. (1987). Turbulent and transition fl ow convective heat transfer in duct, chapter 4 in Handbook of Single phase convective heat transfer, S. Kakac, R.K. Shah, W. Aung, John Wiley & Sons, New York, 95-101.Search in Google Scholar

21. Shah, R.K. (2007). Compact heat exchangers - recuperators and regenerators, chapter 13 in Handbook of Energy effi ciency and renewable energy, F. Kreith, D.Y. Goswami, 7th May 2007, CRC Press, ISBN: 9780849317309, 13-1-13-72.Search in Google Scholar

22. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2014). Quantifi cation of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling. Pol. J. Chem. Technol. 86, 7, 1029-1043. DOI: 10.2478/pjct-2014-0029.10.2478/pjct-2014-0029Search in Google Scholar

23. Launder, B.E. & Spalding, D.B. (1972). Lectures in Mathematical Models of Turbulence, Academic Press, London, UK.Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering