Otwarty dostęp

Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization


Zacytuj

1. Sheldon, R.A. & van Bekkum, H. (Eds.) Fine Chemicals through Heterogeneous Catalysis. Wiley-VCH 2001.10.1002/9783527612963Search in Google Scholar

2. Mitsudomea, T. & Kaneda, K. (2013). Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 15, 2636–2654. DOI: 10.1039/C3GC41360H.10.1039/c3gc41360hSearch in Google Scholar

3. Zhao, P., Feng, X., Huang, D., Yang, G. & Astruc, D. (2015) Basic concepts and recent advances in nitrophenol reduction by gold - and other transition metal nanoparticles. Coord. Chem. Rev. 287, 114–136. DOI:10.1016/j.ccr.2015.01.002.10.1016/j.ccr.2015.01.002Search in Google Scholar

4. Santos, K. de O., Elias, W.C., Signori, A.M., Giacomelli, F.C., Yang, H. & Domingos, J.B. (2012). Synthesis and Catalytic Properties of Silver Nanoparticle−Linear Polyethylene Imine Colloidal Systems. J. Phys. Chem. C 116, 4594−4604. DOI: 10.1021/jp2087169.10.1021/jp2087169Search in Google Scholar

5. Gao, S., Zhang, Z., Liu, K. & Dong, B. (2016). Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl. Catal. B: Environ 188, 245–252. DOI: 10.1016/j.apcatb.2016.01.074.10.1016/j.apcatb.2016.01.074Search in Google Scholar

6. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., Bagherzadeh, M. & Safari, R. (2015). Immobilization of copper nanoparticles on perlite: Green synthesis, characterization and catalytic activity on aqueous reduction of 4-nitrophenol. J. Mol. Cat. A Chem. 400, 22–30. DOI: 10.1016/j.molcata.2015.01.032.10.1016/j.molcata.2015.01.032Search in Google Scholar

7. Hatamifard, A., Nasrollahzadeh, M. & Lipkowski J. (2015). Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time. RSC Adv. 5, 91372–91381. DOI: 10.1039/C5RA18476B.10.1039/C5RA18476BSearch in Google Scholar

8. Rostami-Vartooni, A., Nasrollahzadeh, M. & Alizadeh, M. (2016). Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: Application of the particles for catalytic reduction of organic dyes. J. Coll. Interf. Sci. 470, 268–275. DOI: 10.1016/j.jcis.2016.02.060.10.1016/j.jcis.2016.02.06026962977Search in Google Scholar

9. Tajbakhsh, M., Alinezhad, H., Nasrollahzadeh, M. & Kamali, T.A. (2016). Green synthesis of the Ag/HZSM-5 nanocomposite by using Euphorbia heterophylla leaf extract: A recoverable catalyst for reduction of organic dyes. J. Alloy. Compd. 685, 258–265. DOI: 10.1016/j.jallcom.2016.05.278.10.1016/j.jallcom.2016.05.278Search in Google Scholar

10. Rostami-Vartooni, A., Nasrollahzadeh, M. & Alizadeh, M. (2016). Green synthesis of perlite supported silver nanoparticles using Hamamelis virginiana leaf extract and investigation of its catalytic activity for the reduction of 4-nitrophenol and Congo Eds. J. Alloy. Compd. 680, 309–314. DOI: 10.1016/j.jallcom.2016.04.008.10.1016/j.jallcom.2016.04.008Search in Google Scholar

11. Nasrollahzadeh, M., Atarod, M., Jaleh, B. & Gandomirouzbahani, M. (2016). In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue. Ceram. Inter. 42, 8587–8596. DOI: 10.1016/j.ceramint.2016.02.088.10.1016/j.ceramint.2016.02.088Search in Google Scholar

12. Atarod, M., Nasrollahzadeh, M. & Sajadi, S.M. (2015). Green synthesis of a Cu/reduced graphene oxide/Fe3O4 nanocomposite using Euphorbia wallichii leaf extract and its application as a recyclable and heterogeneous catalyst for the reduction of 4-nitrophenol and rhodamine B. RSC Adv. 5, 91532–91543. DOI: 10.1039/c5ra17269a.10.1039/C5RA17269ASearch in Google Scholar

13. Fakhri, P., Nasrollahzadeh, M. & Jaleh, B. (2014). Graphene oxide supported Au nanoparticles as an efficient catalyst for reduction of nitro compounds and Suzuki–Miyaura coupling in water. RSC Adv. 4, 48691–48697. DOI: 10.1039/C4RA06562J.10.1039/C4RA06562JSearch in Google Scholar

14. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., Alizadeh, M. & Bagherzadeh, M. (2016). Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. J. Col. Interf. Sci. 466, 360–368. DOI: 10.1016/j.jcis.2015.12.036.10.1016/j.jcis.2015.12.03626752431Search in Google Scholar

15. Atarod, M., Nasrollahzadeh, M. & Sajadi, S.M. (2016). Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J. Col. Interf. Sci. 465, 249–258. DOI: 10.1016/j.jcis.2015.11.060.10.1016/j.jcis.2015.11.06026674242Search in Google Scholar

16. Navalon, S., Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. (2016). Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coord. Chem. Rev. 312, 99–148. DOI: 10.1016/j.ccr.2015.12.005.10.1016/j.ccr.2015.12.005Search in Google Scholar

17. Julkapli, N.M. & Bagheri, S. (2015). Graphene supported heterogeneous catalysts: An overview. Int. J. Hydr. Energ. 40, 948–979.10.1016/j.ijhydene.2014.10.129Search in Google Scholar

18. Xu, Y., Sheng, K., Li, Ch. & Shi, G. (2010). Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 4(7), 4324–4330. DOI: 10.1021/nn101187z.10.1021/nn101187z20590149Search in Google Scholar

19. Xia, X.H., Chao, D.L., Zhang, Y.Q., Shen, Z.X. & Fan, H.J. (2015). Three-dimensional graphene and their integrated electrodes. Nano Today 9(6), 785–807. DOI: 10.1016/j.nantod.2014.12.001.10.1016/j.nantod.2014.12.001Search in Google Scholar

20. Fang, Q., Shen, Y. & Chen, B. (2015). Synthesis, decoration and properties of three-dimensional graphene-based macrostructures: A review. Chem. Engine. J. 264, 753–771. DOI: 10.1016/j.cej.2014.12.001.10.1016/j.cej.2014.12.001Search in Google Scholar

21. Li, J., Liu, Ch-Y. & Liu, Y. (2012). Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J. Mater. Chem. 22, 8426–8430. DOI: 10.1039/C2JM16386A.10.1039/c2jm16386aSearch in Google Scholar

22. Dubey, S.P., Dwivedi, A.D., Kim, I-Ch, Sillanpa, M., Kwon, Y-N. & Lee, Ch. (2014). Synthesis of graphene–carbon sphere hybrid aerogel with silver nanoparticles and its catalytic and adsorption applications. Chem. Engine. J. 244, 160–167. DOI: 10.1016/j.cej.2014.01.042.10.1016/j.cej.2014.01.042Search in Google Scholar

23. He, Y., Zhang, N., Gong, Q., Li, Z., Gao, J. & Qiu, H. (2012). Metal nanoparticles supported graphene oxide 3D porous monoliths and their excellent catalytic activity. Mater. Chem. Phys. 134, 585–589. DOI:10.1016/j.matchemphys.2012.04.011.10.1016/j.matchemphys.2012.04.011Search in Google Scholar

24. Wu, T., Chen, M., Zhang, L., Xu, X., Liu, Y., Yan, J., Wang, W. & Gao, J. (2013). Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J. Mater. Chem. A 1, 7612–7621. DOI: 10.1039/C3TA10989E.10.1039/c3ta10989eSearch in Google Scholar

25. ICDD PDF-2 Database Release 1998, ISSN 1084–3116.Search in Google Scholar

26. Kondratowicz, I., Żelechowska, K. & Sadowski, W. (2015). Optimization of graphene oxide synthesis and its reduction. In O. Fesenko & L. Yatsenko (Eds.), Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies (pp. 467–484). Springer.10.1007/978-3-319-18543-9_33Search in Google Scholar

27. Kondratowicz, I. (2014). Porous graphene electrodes. Synthesis, modifications and characterization. Unpublished Master Thesis. Gdansk University of Technology, Gdansk, Poland.Search in Google Scholar

28. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice C.A. & Ruoff, R.S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47, 145–152. DOI: 10.1016/j.carbon.2008.09.045.10.1016/j.carbon.2008.09.045Search in Google Scholar

29. Lisiecki, I. & Pileni, M.P. (1995). Copper Metallic Particles Synthesized “in Situ” in Reverse Micelles: Influence of Various Parameters on the Size of the Particles. J. Phys. Chem. 99, 5077–5082. DOI: 10.1021/j100014a030.10.1021/j100014a030Search in Google Scholar

30. Wunder, S., Polzer, F., Lu, Y. & Mei, Y. (2010). Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C. 114, 8814−8820. DOI: 10.1021/jp101125j.10.1021/jp101125jSearch in Google Scholar

31. Wunder, S., Lu, Y., Albrecht, M. & Ballauff, M. (2011). Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-induced Surface Restructuring. ACS Catal. 1, 908−916. DOI: 10.1021/cs200208a.10.1021/cs200208aSearch in Google Scholar

32. Gu, S., Wunder, S., Lu, Y. & Ballauff, M. (2014). Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. J. Phys. Chem. C 118, 18618−18625. DOI: 10.1021/jp5060606.10.1021/jp5060606Search in Google Scholar

33. Sherazi, S.T.H., Soomro, R.A., Uddin, S. & Memon, N. (2014). Synthesis and characterizations of highly efficient copper nanoparticles and their use in ultrafast catalytic degradation of organic dyes. Adv. Mater. Res. 829, 93–99. DOI: 10.4028/www.scientific.net/AMR.829.93.10.4028/www.scientific.net/AMR.829.93Search in Google Scholar

34. Hang, L., Zhao, Y., Zhang, H., Liu, G., Cai, W., Li, Y. & Qu, L. (2016). Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance. Acta Mater. 105, 59–67. DOI:10.1016/j.actamat.2015.12.029.10.1016/j.actamat.2015.12.029Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering