Zacytuj

1. Daerden, F. & Lefeber, D. (2002). Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 10–21.Search in Google Scholar

2. Chou, C.P. & Hannaford, B. Measurement and modeling of McKibben Pneumatic Artificial Muscles. (1996). IEEE Trans Robot Autom. 12(1), 90–102. DOI: 10.1109/70.481753.10.1109/70.481753Search in Google Scholar

3. Daerden, F. & Lefeber, D. (2001). The concept and design of Pleated Pneumatic Artificial Muscles. Int. J. Fluid. Power. 2(3), 41–50. DOI: 10.1080/14399776.2001.10781119.10.1080/14399776.2001.10781119Search in Google Scholar

4. Villegas, D., Van Damme, M., Vanderborght, B., Beyl, P. & Lefeber, D. (2012). Third-Generation Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle. Adv. Robot. 26(11–12), 1205–1227. DOI: 10.1080/01691864.2012.689722.10.1080/01691864.2012.689722Search in Google Scholar

5. Lee, Y.K. & Shimoyama, I. (2002, January). A multi-channel micro valve for micro pneumatic artificial muscle. In Micro Electro Mechanical Systems, 2002. The Fifteenth IEEE International Conference on (pp. 702–705). IEEE.Search in Google Scholar

6. Lee, Y.K. & Shimoyama, I. (1999). A skeletal framework artificial hand actuated by pneumatic artificial muscles. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on (Vol. 2, pp. 926–931). IEEE.10.1109/ROBOT.1999.772423Search in Google Scholar

7. Koter, K., Podsedkowski, L. & Szmechtyk, T. (2015, July). Transversal Pneumatic Artificial Muscles. In Robot Motion and Control (RoMoCo), 2015 10th International Workshop on (pp. 235–239). IEEE. DOI: 10.1109/RoMoCo.2015.7219741.10.1109/RoMoCo.2015.7219741Search in Google Scholar

8. Zhou, J., Ellis, A.V. & Voelcker, N.H. (2010). Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31(1), 2–16. DOI: 10.1002/elps.200900475.10.1002/elps.20090047520039289Search in Google Scholar

9. Chaffin, K.A., Wilson, C.L., Himes, A.K., Dawson, J.W., Haddad, T.D., Buckalew, A.J. & Simha, N.K. (2013). Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature. Biomaterials 34(33), 8030–8041. DOI: 10.1016/j.biomaterials.2013.06.049.10.1016/j.biomaterials.2013.06.04923871543Search in Google Scholar

10. Chen, Z., Um, T.I. & Bart-Smith, H. (2012). Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles. Int. J. Smart. Nano. Mat. 3(4), 296–308. DOI: 10.1080/19475411.2012.686458.10.1080/19475411.2012.686458Search in Google Scholar

11. Unver, O., Uneri, A., Aydemir, A. & Sitti, M. (2006, May). Geckobot: a gecko inspired climbing robot using elastomer adhesives. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 2329–2335). IEEE.Search in Google Scholar

12. Martinez, R.V., Branch, J.L., Fish, C.R., Jin, L., Shepherd, R.F., Nunes, R. & Whitesides, G.M. (2013). Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 25(2), 205–212. DOI: 10.1002/adma.201203002.10.1002/adma.20120300222961655Search in Google Scholar

13. Konishi, S., Nokata, M., Jeong, O.C., Kusuda, S., Sakakibara, T., Kuwayama, M. & Tsutsumi, H. (2006, May). Pneumatic micro hand and miniaturized parallel link robot for micro manipulation robot system. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 1036–1041). IEEE. DOI: 10.1109/ROBOT.2006.1641846.10.1109/ROBOT.2006.1641846Search in Google Scholar

14. Yoshida, K., Ide, T., Kim, J.W. & Yokota, S. (2009, August). A microgripper using electro-rheological fluid. In ICCAS-SICE, 2009 (pp. 2987–2990). IEEE.Search in Google Scholar

15. Chang, J.H., Kim, S.J., Joo, Y.L. & Im, S. (2004). Poly (ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybryd fibers. Polymer, 45(3), 919–926. DOI: 10.1016/j.polymer.2003.11.037.10.1016/j.polymer.2003.11.037Search in Google Scholar

16. Hoover, A.M. & Fearing, R.S. (2008, May). Fast scale prototyping for folded millirobots. In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on (pp. 886–892). IEEE.10.1109/ROBOT.2008.4543317Search in Google Scholar

17. Ming, A., Luekiatphaisan, N. & Shimojo, M. (2012, August). Development of flapping robots using piezoelectric fiber composites—Improvement of flapping mechanism inspired from insects with indirect flight muscle. In Mechatronics and Automation (ICMA), 2012 International Conference on (pp. 1880–1885). IEEE.10.1109/ICMA.2012.6285108Search in Google Scholar

18. Deimel, R. & Brock, O. (2013, May). A compliant hand based on a novel pneumatic actuator. In Robotics and Automation (ICRA), 2013 IEEE International Conference on (pp. 2047–2053). IEEE. DOI: 10.1109/ICRA.2013.6630851.10.1109/ICRA.2013.6630851Search in Google Scholar

19. Kingsley, D. & Quinn, R.D. (2002). Fatigue life and frequency response of braided pneumatic actuators. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE International Conference on (Vol. 3, pp. 2830–2835). IEEE. DOI: 10.1109/ROBOT.2002.1013661.10.1109/ROBOT.2002.1013661Search in Google Scholar

20. Loganathan, K.S. (1998). Rubber engineering. Indian Rubber Institute, McGraw-Hill, New York, Chapter 1(2000).Search in Google Scholar

21. American Society for Testing and Materials. (1992). ASTM D 543–87. Standard methods for evaluating the resistance of plastics to chemical reagents. Annual book of ASTM standards 8(1). Philadelphia (PA).Search in Google Scholar

22. Ohtsuki, C., Kokubo, T. & Yamamuro, T. (1992). Mechanism of apatite formation on CaO SiO2 P2O5 glasses in a simulated body fluid. J. Non-Cryst Sol. 143, 84–92. DOI: 10.1016/S0022-3093(05)80556-3.10.1016/S0022-3093(05)80556-3Search in Google Scholar

23. Roff, W.J. & Scott, J.R. (2013). Fibres, films, plastics and rubbers: a handbook of common polymers. Elsevier.Search in Google Scholar

24. Lee, J., Kim, J., Kim, H., Bae, Y.M., Lee, K.H. & Cho, H.J. (2013). Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices. J. Micromech. Microengin. 23(3), 035007. DOI: 10.1088/0960-1317/23/3/035007.10.1088/0960-1317/23/3/035007Search in Google Scholar

25. Holland, B.J. & Hay, J.N. (2002). The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer 43(6), 1835–1847. DOI: 10.1016/S0032-3861(01)00775-3.10.1016/S0032-3861(01)00775-3Search in Google Scholar

26. Zhang, Y., Zhang, J., Lu, Y., Duan, Y., Yan, S. & Shen, D. (2004). Glass transition temperature determination of poly (ethylene terephthalate) thin films using reflection-absorption FTIR. Macromolecules 37(7), 2532–2537. DOI: 10.1021/ma035709f.10.1021/ma035709fSearch in Google Scholar

27. Zhang, C. & Chen, Z. (2013). Probing Molecular Structures of Poly (dimethylsiloxane) at Buried Interfaces in Situ. J. Phys. Chem. C, 117(8), 3903–3914. DOI: 10.1021/jp307472j.10.1021/jp307472jSearch in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering