Otwarty dostęp

Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes


Zacytuj

1. Soleimani, M. & Kaghazchi, T. (2008). Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones – An agricultural waste. Bioresource Technol. 99, 5374–3583. DOI: 10.1016/j.biortech.2007.11.021.10.1016/j.biortech.2007.11.02118178431Search in Google Scholar

2. Soares Maia, D.A., Alexandre de Oliveira, J.C., Toso, J.P., Sapag, K., Lopez, R.H., Azevedo, D.C.S., Cavalcante Jr, C.L. & Zgrablich, G. (2011). Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 17, 853–861. DOI: 10.1007/s10450-011-9344-4.10.1007/s10450-011-9344-4Search in Google Scholar

3. Tsai, W.T., Chang, C.Y., Lee, S.L. & Wang, S.Y. (2001). Thermogravimetric analysis of corn cob impregnated with zinc chloride or preparation of activated carbon. J. Therm. Anal. Calorim. 63, 351–357. DOI: 10.1023/A:1010132207402.10.1023/A:1010132207402Search in Google Scholar

4. Yagmur, E. (2012). Preparation of low cost activated carbons from various biomasses with microwave energy. J. Porous. Mater. 19, 995–1002. DOI: 10.1007/s10934-011-9557-7.10.1007/s10934-011-9557-7Search in Google Scholar

5. Asasian, N. & Kaghazchi, T. (2013). A comparison on efficiency of virgin and sulfurized agro-based adsorbents for mercury removal from aqueous systems. Adsorption 19, 189–200. DOI: 10.1007/s10450-012-9437-8.10.1007/s10450-012-9437-8Search in Google Scholar

6. Nowicki, P., Supłat, M., Przepiórski, J. & Pietrzak, R. (2012). NO2 removal on adsorbents obtained by pyrolysis and physical activation of corrugated cardboard. Chem. Eng. J. 195–196, 7–14. DOI: 10.1016/j.cej.2012.04.073.10.1016/j.cej.2012.04.073Search in Google Scholar

7. Amaya, A., Píriz, J., Tancredi, N. & Cordero, T. (2007). Activated carbon pellets from eucalyptus char and tar TG studies. J. Therm. Anal. Calorim. 89, 987–991. DOI: 10.1007/s10973-006-7685-0.10.1007/s10973-006-7685-0Search in Google Scholar

8. Nowicki, P., Skibiszewska, P. & Pietrzak, R. (2013). NO2 removal on adsorbents prepared from coffee industry waste materials. Adsorption 19, 521–528. DOI: 10.1007/s10450-013-9474-y.10.1007/s10450-013-9474-ySearch in Google Scholar

9. Alcañiz-Monge, J. & Illán-Gómez, M.J. (2008). Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. Adsorption 14, 93–100. DOI: 10.1007/s10450-007-9056-y.10.1007/s10450-007-9056-ySearch in Google Scholar

10. Khalil, S.H., Aroua, M.K. & Wan Daud, W.M.A. (2012). Study on the improvement of the capacity of amine-impregnated commercial activated carbon beds for CO2 adsorbing. Chem. Eng. J. 183, 15–20. DOI: 10.1016/j.cej.2011.12.011.10.1016/j.cej.2011.12.011Search in Google Scholar

11. Skubiszewska-Zięba, J., Sydorchuk, V.V., Gunko, V.M. & Leboda, R. (2011). Hydrothermal modification of carbon adsorbents. Adsorption 17, 919–927. DOI: 10.1007/s10450-011-9369-8.10.1007/s10450-011-9369-8Search in Google Scholar

12. Budarin, V.L., Clark, J.H., Gorlova, A.A., Boldyreva, N.A. & Yatsimirsky, V.K. (2000). Chemical modification of activated carbons. J. Therm. Anal. Calorim. 62, 349–352. DOI: 10.1023/A:1010156002389.10.1023/A:1010156002389Search in Google Scholar

13. Tamai, H., Shiraki, K., Shiono, T. & Yasuda, H. (2006). Surface functionalization of mesoporous and microporous activated carbons by immobilization of diamine. J. Colloid. Interf. Sci. 295, 299–302. DOI: 10.1016/j.jcis.2005.08.012.10.1016/j.jcis.2005.08.012Search in Google Scholar

14. Sousa, J.P.S., Pereira, M.F.R. & Figueiredo, J.L. (2013). Modified activated carbon as catalyst for NO oxidation. Fuel Process. Technol. 106, 727–733. DOI: 10.1016/j.fuproc.2012.10.008.10.1016/j.fuproc.2012.10.008Search in Google Scholar

15. Bandosz, T.J. & Ania, C.O. (2006). Surface chemistry of activated carbons and its characterization. In T.J. Bandosz, (ed.), Activated carbon surfaces in environmental remediation (pp. 105–229). Amsterdam, Holland: Elsevier Ltd.Search in Google Scholar

16. Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M. & Tsyba, M.M. (2007). Phosphoric acid activation-functionalization and porosity modification. Appl. Surf. Sci. 253, 5736–3740. DOI: 10.1016/j.apsusc.2006.12.034.10.1016/j.apsusc.2006.12.034Search in Google Scholar

17. Pradhan, B.K. & Sandle, N.K. (1999). Effect of different oxidizing agent treatments on the surface properties of activated carbon. Carbon 37, 1323–1332. DOI: 10.1016/S0008-6223(98)00328-5.10.1016/S0008-6223(98)00328-5Search in Google Scholar

18. Yang, C.M. & Kaneko, K. (2002). Adsorption properties of iodine-doped activated carbon fiber. J. Colloid. Interface. Sci. 246, 34–39. DOI: 10.1006/jcis.2001.8012.10.1006/jcis.2001.801216290381Search in Google Scholar

19. Goscianska, J., Nowak, I., Nowicki, P. & Pietrzak, R. (2012). The influence of silver on the physicochemical and catalytic properties of activated carbons. Chem. Eng. J. 189–190, 422–30. DOI: 10.1016/j.cej.2012.02.069.10.1016/j.cej.2012.02.069Search in Google Scholar

20. Park, S.J. & Shin, J.S. (2004). Preparation and characterization of activated carbon/Cu catalyst by electroless copper plating for removal of NO. J. Porous. Mater. 11, 15–19. DOI: 10.1023/B:JOPO.0000020432.04712.b8.10.1023/B:JOPO.0000020432.04712.b8Search in Google Scholar

21. Pietrzak, R., Wachowska, H. & Nowicki, P. (2006). Preparation of nitrogen-enriched activated carbons from brown coal. Energ. Fuel. 20, 1275–1280. DOI: 10.1021/ef0504164.10.1021/ef0504164Search in Google Scholar

22. Nowicki, P., Pietrzak, R. & Wachowska, H. (2009). Influence of metamorphism degree of the precursor on preparation of nitrogen enriched activated carbons by ammoxidation and chemical activation of coals. Energ. Fuel. 23, 2205–2212. DOI: 10.1021/ef801094c.10.1021/ef801094cSearch in Google Scholar

23. Nowicki, P. & Pietrzak, R. (2011). Effect of ammoxidation of activated carbons obtained from sub-bituminous coal on their NO2 sorption capacity under dry conditions. Chem. Eng. J. 166, 1039–1043. DOI: 10.1016/j.cej.2010.11.101.10.1016/j.cej.2010.11.101Search in Google Scholar

24. Boehm, H.P., Diehl, E., Heck, W. & Sappok, R. (1964). Surface oxides of carbon, Angew. Chem. Int. Ed. Engl. 3, 669–677. DOI: 10.1002/anie.196406691.10.1002/anie.196406691Search in Google Scholar

25. Kaźmierczak, J., Nowicki, P. & Pietrzak, R. (2013). Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption 19, 273–281. DOI: 10.1007/s10450-012-9450-y.10.1007/s10450-012-9450-ySearch in Google Scholar

26. Goscianska, J., Nowak, I., Nowicki, P. & Pietrzak, R. (2012). Thermal analysis of activated carbons modified with silver metavanadate. Thermochim. Acta 541, 42–48. DOI: 10.1016/j.tca.2012.04.026.10.1016/j.tca.2012.04.026Search in Google Scholar

27. Bimer, J., Sałbut, P.D., Berłożecki, S., Boudou, J.P., Broniek, E. & Siezieniewska, T. (1998). Modified active carbons from precursors enriched with nitrogen functions: sulfur removal capabilities. Fuel 77, 519–525. DOI: 10.1016/S0016-2361(97)00250-0.10.1016/S0016-2361(97)00250-0Search in Google Scholar

28. Choma, J. & Jaroniec, M. (2006). Characterization of nanoporous carbons by using gas adsorption isotherms. In T.J. Bandosz, (ed.), Activated carbon surfaces in environmental remediation (pp. 107–158). Amsterdam, Holland: Elsevier Ltd.Search in Google Scholar

29. Biniak, S., Szymański, G., Siedlewski, J. & Świątkowski, A. (1997). The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810. DOI:10.1016/S0008-6223(97)00096-1.10.1016/S0008-6223(97)00096-1Search in Google Scholar

30. Bansal, R.Ch. & Goyal, M. (2005). Activated Carbon Adsorption. Boca Raton, USA: Taylor & Francis Group.10.1201/9781420028812Search in Google Scholar

31. Szymański, G.S., Karpiński, Z., Biniak, S. & Świątkowski, A. (2002). The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639. DOI: 10.1016/S0008-6223(02)00188-4.10.1016/S0008-6223(02)00188-4Search in Google Scholar

32. Zielke, U., Huttinger, K.J. & Hoffman, W.P. (1996). Surface-oxidized carbon fibres: I. surface structure and chemistry. Carbon 34, 983–998. DOI: 10.1016/0008-6223(96)00032-2.10.1016/0008-6223(96)00032-2Search in Google Scholar

33. Barton, S.S., Evans, M.I.B., Halliop, E. & MacDonald, J.A.F. (1997). Anodic oxidation of porous carbon. Langmuir 13, 1332–1336. DOI: 10.1021/la9509413.10.1021/la9509413Search in Google Scholar

34. Biniak, S., Pakuła, M. & Świątkowski, A. (2001). Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces. In L.R. Radovic, (ed.). Chemsitry and physics of carbon (pp. 125–226). New York, USA: Marcel Dekker,Search in Google Scholar

35. Bandosz, T.J. (2009). Surface chemistry of carbon materials. In F. Serp & J.L. Figueiredo (eds.) Carbon materials for catalysis (pp. 45–92). Hoboken, USA: John Wiley & Sons Inc.Search in Google Scholar

36. Boehm, H.P. (2008). Surface chemical characterization of carbons from adsorption studies. In E.J. Bottani & J.M.D. Tascon (eds.) Adsorption by carbons (pp. 301–328). Oxford, England: Elsevier.Search in Google Scholar

37. Awual, M.R. (2015). A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 266, 368–375. DOI:10.1016/j.cej.2014.12.094.10.1016/j.cej.2014.12.094Search in Google Scholar

38. Awual, M.R. & Hasan, M.M. (2015). Colorimetric detection and removal of copper(II) ions from wastewater samples using tailor-made composite adsorbent. Sensor. Actuat. B-Chem. 206, 692–700. DOI:10.1016/j.snb.2014.09.086.10.1016/j.snb.2014.09.086Search in Google Scholar

39. Awual, M.R., Yaita, T. & Okamoto, Y. (2014). A novel ligand based dual conjugate adsorbent for cobalt(II) andcopper(II) ions capturing from water. Sensor. Actuat. B-Chem. 203, 71–80. DOI:10.1016/j.snb.2014.06.088.10.1016/j.snb.2014.06.088Search in Google Scholar

40. Rio, S., Faur-Brasquet, C., Coq, L.L., Courcoux, P. & Cloirec, P.L. (2005). Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation – application to air and water treatments. Chemosphere 58, 423–427. DOI: 10.1016/j.chemosphere.2004.06.003.10.1016/j.chemosphere.2004.06.003Search in Google Scholar

41. Liu, C., Bai, R. & Ly, Q.S. (2008). Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 42, 1511–1522. DOI: 10.1016/j.watres.2007.10.031.10.1016/j.watres.2007.10.031Search in Google Scholar

42. Liu, A.M., Hidajat, K., Kawi, S. & Zhao, D.Y. (2000). A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem. Commun. 1145–1146. DOI: 10.1039/B002661L.10.1039/b002661lSearch in Google Scholar

43. Cochrane, E.L., Lu, S., Gibb, S.W. & Villaescusa, I. (2006) A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J. Hazard. Mater. 137, 198–206. DOI: 10.1016/j.jhazmat.2006.01.054.10.1016/j.jhazmat.2006.01.054Search in Google Scholar

44. Hu, X., Liu, Y., Wang, H., Chen, A., Zeng, G., Liu, S., Guo, Y., Hu, X., Li, T., Wang, L., Zhou, L. & Liu, S. (2013). Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 108, 189–195. DOI: 10.1016/j.seppur.2013.02.011.10.1016/j.seppur.2013.02.011Search in Google Scholar

45. Bois, L., Bonhomme, A., Ribes, A., Pais B., Fraffin, G. & Tessier, F. (2003). Functionalized silica for heavy metal ions adsorption. Colloid. Surf. A: Physicochem. Eng. Asp. 221, 221–230. DOI: 10.1016/S0927-7757(03)00138-9.10.1016/S0927-7757(03)00138-9Search in Google Scholar

46. Awual, M.R., Ismael, M., Yaita, T., El-Safty, S.A., Shiwaku, H., Okamoto, Y. & Suzuki, S. (2013). Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem. Eng. J. 222, 67–76. DOI: 10.1016/j.cej.2013.02.042.10.1016/j.cej.2013.02.042Search in Google Scholar

47. Awual, M.R., Yaita, T., El-Safty, S.A., Shiwaku, H., Suzuki, S. & Okamoto, Y. (2013). Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 221, 322–330. DOI: 10.1016/j.cej.2013.02.016.10.1016/j.cej.2013.02.016Search in Google Scholar

48. Awual, M.R., Ismael, M., Khaleque, M.A. & Yaita, T. (2014). Ultra-trace copper(II) detection and removal from wastewater using novel meso-adsorbent. J. Ind. Eng. Chem. 20, 2332–2340. DOI: 10.1016/j.jiec.2013.10.009.10.1016/j.jiec.2013.10.009Search in Google Scholar

49. Awual, M.R., Rahman, I.M.M., Yaita, T., Khaleque, M.A. & Ferdows, M. (2014). pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem. Eng. J. 236, 100–109. DOI: 10.1016/j.cej.2013.09.083.10.1016/j.cej.2013.09.083Search in Google Scholar

eISSN:
1899-4741
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering