Otwarty dostęp

Macrophyte biometric features as an indicator of the trophic status of small water bodies


Zacytuj

Agostini S., Pergent G. &, Marchand B. (2003). Growth and primary production of Cymodocea nodosa in a coastal lagoon. Aquatic Botany, 76: 185-193. DOI:10.1016/S0304-3770(03)00049-4.10.1016/S0304-3770(03)00049-4 Search in Google Scholar

Bachmann R.W., Horsburgh C.A., Hoyer M.V., Mataraza L.K. & Canfield D.K.Jr. (2002). Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia, 470: 219-234. Search in Google Scholar

Canfield D., Shireman J., Colle D., Haller W., Watkins C. & Maceina M. (1984). Prediction of chlorofyll a concentrations in Florida lakes: importance of aquatic macrophytes, Canadian Journal of Fisheries and Aquatic sciences, 41: 497-501.10.1139/f84-059 Search in Google Scholar

Carlson R.E. (1977). A trophic state index for lakes. Limnology and Oceanography, 22:361-369. Search in Google Scholar

Chiang C., Craft C.B., Rogers D.W. & Richardson C.J. (2000). Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communities. Aquatic Botany, 68: 61-78. PII: S0304-3770(00)00098-X. Search in Google Scholar

Chmara R., Szmeja J. & Banaś K. (2014). Factors controlling the frequency and biomass of submerged vegetation in outwash lakes supplied with surface water or groundwater. Boreal Environment Research, 19: 168-180. Search in Google Scholar

Choiński A. (1995). An outline of physical limnology of Poland. Wydawnictwo Naukowe UAM, Poznań, p. 298 (In Polish). Search in Google Scholar

Ciecierska A. (2008). Macrophyte-based indices of the ecological state of lakes. Dissertations and monographs. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego 193 p. 202. (In Polish, English summary). Search in Google Scholar

Fernandez-Alaez M., Fernandez-Alaez C. & Rodriguez S. (2002). Seasonal changes in biomass of charophytes in shallow lakes in the northwest of Spain. Aquatic Botany, 72: 335-348. PII: S0304-3770(01)00209-1. Search in Google Scholar

Gąbka M. 2009: Charophytes of the Wielkopolska region (NM Poland): distribution, taxonomy and autecology. Bogucki Wydawnictwo Naukowe Poznań, p.110. Search in Google Scholar

Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B. & Zerbe J. 1999: Physico-chemical examination of water and wastewater. Arkady, Warszawa pp. 556. (In Polish). Search in Google Scholar

Joniak T., Kuczyńska-Kippen N. & Nagengast B. (2006). Chemistry of waters of small water bodies in the agricultural landscape of the western Wielkopolska region. Teka of the Commission of Protection and Formation of the Natural Environment. 3: 60-65. Search in Google Scholar

Kajak Z. (1979). Eutrofizacja jezior. PWN. Warszawa. P. 232. Search in Google Scholar

Klimaszyk P. & Heymann D. (2010). Vertical distribution of benthic macroinvertebrates in a meromictic lake (Lake Czarne, Drawieński National Park). Oceanological and Hydrobiological Studies, 39(4): 99-106 DOI: 10.2478/v10009-010-0048-y.10.2478/v10009-010-0048-y Search in Google Scholar

Kłosowski S. (1985). Habitat requirements and bioindicator value of main communities of aquatic vegetation in northeast Poland. Polish Archives of Hydrobiology, 32, 1: 7-29. Search in Google Scholar

Kłosowski S. & Jabłonska E. (2009). Aquatic and swamp plant communities as indicators of habitat properties of astatic water bodies in north-eastern Poland. Limnologica, 39: 115-127. DOI:10.1016/j.limno.2008.01.003.10.1016/j.limno.2008.01.003 Search in Google Scholar

Kłosowski S. & Kłosowski G. (2001). Aquatic and swamp plants. Multico Oficyna Wydawnicza Warszawa. p. 335 (In Polish). Search in Google Scholar

Kłosowski S. (2006). Methods of identification of communities and analyze their ecological amplitude. In. Szmeja J. (2006). A Quidebook for studying aquatic plants. Wydawnictwo UG Gdańsk. 367-391. (In Polish). Search in Google Scholar

Kocur-Bera K. (2012). Hazards identyfication existing in rural areas. Infrastructure and ecology of rural areas, 2(3), 31-43. (In Polish, English summary). Search in Google Scholar

Kolada A. (2014). The effect of lake morphology on aquatic vegetation development andchanges under the influence of eutrophication. Ecological Indicators, 38 282- 293. DOI: 10.1016/j.ecolind.2013.11.015.10.1016/j.ecolind.2013.11.015 Search in Google Scholar

Kolada A. & Ciecierska H. (2008). Methods for lake macrophyte surveying in the light of biological monitoring required by Water Framework Directive. Environmental Protection and Natural Resources, 37: 9-2 (In Polish, English summary). Search in Google Scholar

Kraska M., Piotrowicz R. & Radziszewska R. (1999). Dystrophication as the chief factor of changes in the physicochemical properties of water and vegetation of lobelian lakes of the Bory Tucholskie National Park (NW Poland). Acta Hydrobiol., 41, 6, 127-135. Search in Google Scholar

Kuczyńska-Kippen N. (2014). Environmental variables of small mid-field water bodies and the presence of Rotifera groups of different ecological requirements. Polish Journal of Environmental Studies, 23/2:373-378. Search in Google Scholar

Kuczyńska-Kippen N. & Basińska A. (2014). Habitat as the most important influencing factor for the rotifer community structure at landscape level. International Review of Hydrobiology, 99/1: 58-64. Search in Google Scholar

Kuczyńska-Kippen N. & Nagengast B. (2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of Rotifer and Cladoceran communities. Hydrobiologia, 559: 203-212. DOI 10.1007/ s10750-005-0867-0. Search in Google Scholar

Kuczyńska-Kippen N., Nagengast B. & Joniak T. (2009). The impact of biometric parameters of a hydromacrophyte habitat on the structure of zooplankton communities in various types of small water bodies. Oceanological and Hydrobiological Studies, 38(2): 99-108. DOI 10.2478/v10009-009-0026-4. Search in Google Scholar

Kuczyńska-Kippen N. & Wiśniewska M. (2011). Environmental Predictors of Rotifer Community Structure in Two Types of Small Water Bodies. International Review of Hydrobiology, 96/4: 397-404. Search in Google Scholar

Lampert W. & Sommer U. (2001). Freshwater ecology. Wydawnictwo Naukowe PWN. p. 416. Search in Google Scholar

Liffen T., Gurnell A.M. & O’Hare M.T. (2013). Profiling the below ground biomass of an emergent macrophyte using an adapted ingrowth core method. Aquatic Botany, 110 97-102. DOI: 10.1016/j.aquabot.2013.05.008.10.1016/j.aquabot.2013.05.008 Search in Google Scholar

Lorens B. & Sugier P. (2010). Changes in the spatial structure of submerged macrophytes in Lake Rotcze (Łęczna-Włodawa Lakeland). Oceanological and Hydrobiological Studies, 39/4: 65-73. Search in Google Scholar

Nagengast B. & Kuczyńska-Kippen N. (2008). Biometric parameters of various macrophyte species in Lake Wielkowiejskie: the impact of season and chemical variables. Teka Commission of Protection and Formation of Natural Environment 5a: 80-88. Search in Google Scholar

O’Hare M.T., Clarke R.T., Bowes M.J., Cailes C., Henville P., Bissett N., McGahey C. & Neal M. (2010). Eutrophication impacts on a river macrophyte. Aquatic Botany, 92: 173-178. DOI:10.1016/j.aquabot.2009.11.001.10.1016/j.aquabot.2009.11.001 Search in Google Scholar

Pełechaty M. (2004). Can reed stands be good indicators of environmental conditions of the lake littoral? A synecological investigation of Phragmites australis - dominated phytocoenoses. Polish Journal of Environmental Studies, 13: 177-183. Search in Google Scholar

Pinowska A. (2002): Effects of snail grazing and nutrient release on growth of the macrophytes Ceratophyllum demersum and Elodea canadensis and the filamentous green alga Cladophora sp. Hydrobiologia, 479: 83-94.10.1023/A:1021070616130 Search in Google Scholar

Scheffer M. (2001a). Alternative attractors of shallow lakes. The Scientific World 1: 254-263.10.1100/tsw.2001.62608411612806081 Search in Google Scholar

Scheffer M. (2001b). Ecology of Shallow Lakes. Kluwer Academic Publishers. Dordrecht, Boston, London. Search in Google Scholar

Scheffer M., Hosper S.H., Meijer M.L, Moss B. & Jeppesen E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology and Evolution, 8: 275-279. Search in Google Scholar

Siebielec G., Smreczak B., Klimkowicz-Pawlas A., Maliszewska- Kordybach B., Terelak H. et al. (2012). Monitoring the chemistry of arable soils in Poland in 2010-2012. Institute of Soil Science and Plant Cultivation. p. 202. Search in Google Scholar

Sondergaard M., Jeppesen E. & Jensen J.P. (2005). Pond or lake: does it make any difference? Archiv für Hydrobiologii, 162: 143-165.10.1127/0003-9136/2005/0162-0143 Search in Google Scholar

Szmeja J. (2006). A Quidebook for studying aquatic plants. Wydawnictwo UG Gdańsk.p. 467 (In Polish). Search in Google Scholar

Tanaka N., Asaeda T., Hasegawa A. & Tanimoto K. (2004). Modelling of the long-term competition between Typha angustifolia and Typha latifolia in shallow water- effects of eutrophication, latitude and initial advantage of belowground organs. Aquatic Botany, 79: 295-310. DOI:10.1016/j. aquabot.2004.03.001. Search in Google Scholar

Tomaszewicz H. 1979: Aquatic and rushes vegetation in Polish (Classes. Lemnetea, Charetea, Potamogetonetea, Phrgmitetea) Dissertations. University of Warsaw 160: 1-324. (In Polish). Search in Google Scholar

Urbaniak J. & Gąbka M. (2014). Polish Charophytes an illustrated guide to identification. Wydawnictwo Uniwersytetu Przyrodniczegi we Wrocławiu p. 120. Search in Google Scholar

Valley R.D. & Drake M.T. (2007). What does resilience of a clear-water state in lakes mean for the spatial heterogeneity of submersed macrophyte biovolume? Aquatic Botany, 87: 307-319. DOI:10.1016/j.aquabot.2007.07.003.10.1016/j.aquabot.2007.07.003 Search in Google Scholar

van Zuidam J.P. & Peeters E.T.H.M. (2012). Cutting affects growth of Potamogeton lucens L. and Potamogeton compressus L. Aquatic Botany, 100: 51- 55. DOI:10.1016/j. aquabot.2012.02.005. Search in Google Scholar

Vestergaard O. & Sand-Jensen K. (2000). Alkalinity and trophic state regulate aquatic plantdistribution in Danish lakes. Aquatic Botany, 67: 85-107. Search in Google Scholar

Vis C., Hudon C. & Carignan R. (2003). An evaluation of approaches used to determine the distribution and biomass of emergent and submerged aquatic macrophytes over large spatial scales. Aquatic Botany, 77 187-201. doi:10.1016/ S0304-3770(03)00105-0. Search in Google Scholar

Wingfield R., Murphy K.J. & Gaywood M. (2006). Assessing and predicting the success of Najas flexilis (Willd.) Rostk. & Schmidt, a rare European aquatic macrophyte, in relation to lake environmental conditions. Hydrobiologia, 570: 79-86. DOI 10.1007/s10750-006-0165-5. Search in Google Scholar

Wood K.A., Stillman R.A., Clarke R.T., Daunt F. & O’Hare M.T. (2012). Measuring submerged macrophyte standing crop in shallow rivers: A test of methodology. Aquatic Botany, 102: 28- 33. DOI: 10.1016/j.aquabot.2012.04.006.10.1016/j.aquabot.2012.04.006 Search in Google Scholar

Xiao K., Yu D. & Wu Z. (2007). Differential effects of water depth and sediment type on clonal growth of the submersed macrophyte Vallisneria natans. Hydrobiologia 589:265-272. DOI 10.1007/s10750-007-0740-4. Search in Google Scholar

Zhu B., Mayer C.M., Rudstam L.G., Mills E.L. & Ritchie M.E. (2008). A comparison of irradiance and phosphorus effects on the growth of three submerged macrophytes. Aquatic Botany, 88 :358-362. DOI:10.1016/j.aquabot.2008.01.003.10.1016/j.aquabot.2008.01.003 Search in Google Scholar

eISSN:
1897-3191
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, other, Geosciences, Life Sciences