Otwarty dostęp

Positron annihilation lifetime spectroscopy study of roller burnished magnesium alloy


Zacytuj

1. Zhang, P., & Lindemann, J. (2005). Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Mater., 52(6), 485–490. DOI: 10.1016/j.scriptamat.2004.11.003.10.1016/j.scriptamat.2004.11.003Search in Google Scholar

2. Zhang, P., & Lindemann, J. (2005). Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80. Scripta Mater., 52(10), 1011–1015. DOI: 10.1016/j.scriptamat.2005.01.026.10.1016/j.scriptamat.2005.01.026Search in Google Scholar

3. Fouad, Y. (2011). Fatigue behavior of a rolled AZ31 magnesium alloy after surface treatment by EP and BB conditions. Alexandria Eng. J., 50(1), 23–27. DOI: 10.1016/j.aej.2011.01.004.10.1016/j.aej.2011.01.004Search in Google Scholar

4. Pu, Z., Yang, S., Song, G. L., Dillon Jr, O. W., Puleo, D. A., & Jawahir, I. S. (2011). Ultrafine-grained surface layer on Mg-Al-Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scripta Mater., 65(6), 520–523. DOI: 10.1016/j.scriptamat.2011.06.013.10.1016/j.scriptamat.2011.06.013Search in Google Scholar

5. Zaleski, R., & Zaleski, K. (2006). Positron annihilation in steel burnished by vibratory shot peening. Acta Phys. Pol. A, 110(5), 739–746.10.12693/APhysPolA.110.739Search in Google Scholar

6. Zaleski, K., & Zaleski, R. (2009). Badania warstwy wierzchniej stopu tytanu technikami wykorzystującymi anihilację pozytonów. Inżynieria Materiałowa, 5, 302–305.Search in Google Scholar

7. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374(2), 235–244. DOI: 10.1016/0168-9002(96)00075-7.10.1016/0168-9002(96)00075-7Search in Google Scholar

8. Mengucci, P., Barucca, G., Riontino, G., Lussana, D., Massazza, M., Ferragut, R., & Aly, E. H. (2008). Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater. Sci. Eng. A, 479(1/2), 37–44. DOI: 10.1016/j.msea.2007.06.016.10.1016/j.msea.2007.06.016Search in Google Scholar

9. Djourelov, N., & Misheva, M. (1996). Source correction in positron annihilation lifetime spectroscopy. J. Phys.-Condens. Mat., 8(12), 2081. DOI: 10.1088/0953-8984/8/12/020.10.1088/0953-8984/8/12/020Search in Google Scholar

10. Čížek, J., Procházka, I., Smola, B., Stulíková, I., & Očenášek, V. (2007). Influence of deformation on precipitation process in Mg-15 wt.%Gd alloy. J. Alloys Compd., 430(1/2), 92–96. DOI: 10.1016/j.jallcom.2006.03.097.10.1016/j.jallcom.2006.03.097Search in Google Scholar

11. Čížek, J., Vlček, M., Smola, B., Stulíková, I., Procházka, I., Kužel, R., Jäger, A., & Lejček, P. (2012). Vacancy-like defects associated with icosahedral phase in Mg-Y-Nd-Zr alloys modified by the addition of Zn. Scripta Mater., 66(9), 630–633. DOI: 10.1016/j.scriptamat.2012.01.054.10.1016/j.scriptamat.2012.01.054Search in Google Scholar

12. Dryzek, J., & Dryzek, E. (2007). The subsurface zone in magnesium alloy studied by positron annihilation techniques. Tribol. Int., 40(9), 1360–1368. DOI: 10.1016/j.triboint.2007.03.004.10.1016/j.triboint.2007.03.004Search in Google Scholar

13. Ortega, Y., & Rıo, Jd. (2005). Study o f Mg-Ca alloys by positron annihilation technique. Scripta Mater., 52(3), 181–186. DOI: 10.1016/j.scriptamat.2004.09.033.10.1016/j.scriptamat.2004.09.033Search in Google Scholar

14. Moia, F., Calloni, A., Ferragut, R., Dupasquier, A., Macchi, C. E., Somoza, A., & Jian Feng Nie (2009). Vacancy-solute interaction in magnesium alloy WE54 during artificial ageing: a positron annihilation spectroscopy study. Int. J. Mater. Res., 100(3), 378–381. DOI: 10.3139/146.110036.10.3139/146.110036Search in Google Scholar

15. Čížek, J., Procházka, I., Smola, B., Stulíková, I., Kužel, R., Matěj, Z., & Cherkaska, V. (2006). Thermal development of microstructure and precipitation effects in Mg-10wt%Gd alloy. Phys. Status Solidi A, 203(3), 466–477. DOI: 10.1002/pssa.200521483.10.1002/pssa.200521483Search in Google Scholar

16. Hautojärvi, P., Johansson, J., Vehanen, A., Yli-Kauppila, J., Hillairet, J., & Tzanétakis, P. (1982). Trapping of positrons at vacancies in magnesium. Appl. Phys. A, 27(1), 49–56. DOI: 10.1007/BF01197546.10.1007/BF01197546Search in Google Scholar

17. Checchetto, R., Bazzanella, N., Kale, A., Miotello, A., Mariazzi, S., Brusa, R. S., Mengucci, P., Macchi, C., Somoza, A., Egger, W., & Ravelli, L. (2011). Enhanced kinetics of hydride-metal phase transition in magnesium by vacancy clustering. Phys. Rev. B, 84(5), 054115. DOI: 10.1103/PhysRevB.84.054115.10.1103/PhysRevB.84.054115Search in Google Scholar

18. Luna, C. R., Macchi, C., Juan, A., & Somoza, A. (2013). Vacancy clustering in pure metals: some first principle calculations of positron lifetimes and momentum distributions. J. Phys. Conf. Ser., 443(1), 012019. DOI: 10.1088/1742-6596/443/1/012019.10.1088/1742-6596/443/1/012019Search in Google Scholar

19. Brandt, W. (1974). Positron dynamics in solids. A ppl. Phys., 5(1), 1–23. DOI: 10.1007/BF01193389.10.1007/BF01193389Search in Google Scholar

eISSN:
0029-5922
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other