Otwarty dostęp

Magnetic nanowires (Fe, Fe-Co, Fe-Ni) – magnetic moment reorientation in respect of wires composition


Zacytuj

1. Ersen, O., Begin, S., Houlle, M., Amadou, J., Janowska, I., Greneche, J. M., Crucifix, C., & Pham-Huu, C. (2008). Microstructural investigation of magnetic CoFe2O4 nanowires inside carbon nanotubes by electron tomography. Nano Lett., 8, 1033–1040. DOI: 10.1021/nl072714e.10.1021/nl072714eSearch in Google Scholar

2. Peter, L., Casik, A., Vad, K., Toth-Kadar, E., Pekker, A., & Molnar, G. (2010). On the composition depth profile of electrodeposited Fe-Co-Ni alloys. Electrochim. Acta, 55, 4734–4741. DOI: 10.1016/j.electacta.2010.03.075.10.1016/j.electacta.2010.03.075Search in Google Scholar

3. Osaka, T. (2000). Electrodeposition of highly functional thin films for magnetic recording devices of the next century. Electrochim. Acta, 45, 3311–3321. DOI: 10.1016/S0013-4686(00)00407-2.10.1016/S0013-4686(00)00407-2Search in Google Scholar

4. Quemper, J. M., Nicolas, S., Gilles, J. P., Grandchamp, J. P., Bosseboeuf, A., Bourouina, T., & Dufour-Gergam, E. (1999). Permalloy electroplating through photoresist molds. Sens. Actuator, 74, 1–4. DOI: 10.1016/S0924-4247(98)00323-9.10.1016/S0924-4247(98)00323-9Search in Google Scholar

5. Munoz, A. G. Schiefer, C., Nentwig, Th., Man, W.-Y., & Kisker, E. (2007). Magneto impedance of electroplated NiFeMo/Cu microwires for magnetic sensors. J. Phys. D-Appl. Phys., 40, 5013–5020. DOI: 10.1088/0022-3727/40/17/001.10.1088/0022-3727/40/17/001Search in Google Scholar

6. Bauer, L. A., Birenbaum, N. S., & Meyer, G. J. (2004). Biological applications of high aspect ratio nanoparticles. Mater. Chem., 14, 517–526. DOI: 10.1039/b312655b.10.1039/b312655bSearch in Google Scholar

7. Niemirowicz, K., Swiecicka, I., Wilczewska, A. Z., Misztalewska, I., Kalska-Szostko, B., Bienias, K., Bucki, R., & Car, H. (2014). Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int. J. Nanomed., 8(9), 2217–2224. DOI: 10.2147/IJN.S56588.10.2147/IJN.S56588402090524855358Search in Google Scholar

8. Kalska-Szostko, B., Orzechowska, E., & Wykowska, U. (2013). Organophosphorous modifications of multifunctional magnetic nanowires. Colloid Surf. B-Biointerfaces, 111, 509–516. DOI: 10.1016/j.colsurfb.2013.05.03.Search in Google Scholar

9. Kalska-Szostko, B., & Orzechowska, E. (2011). Preparation of magnetic nanowires modified with functional groups. Curr. Appl. Phys., 11(5), S103–S108. DOI: 10.1016/j.cap.2011.04.051.10.1016/j.cap.2011.04.051Search in Google Scholar

10. Liu, X., Zangari, G., & Shen, L. (2000). Electrodeposition of soft, high moment Co-Fe-Ni thin films. J. Appl. Phys., 87, 5410–5412. DOI: 10.1063/1.373359.10.1063/1.373359Search in Google Scholar

11. Kalska-Szostko, B., Brancewicz, E., Mazalski, P., Sveklo, J., Olszewski, W., Szymański, K., & Sidor, A. (2009). Electrochemical deposition of nanowires in porous alumina. Acta Phys. Pol. A, 115, 542–544.10.12693/APhysPolA.115.542Search in Google Scholar

12. Kalska-Szostko, B., Brancewicz, E., Olszewski, W., Szymański, K., Sidor, A., Sveklo, J., & Mazalski, P. (2009). Electrochemical preparation of magnetic nanowires. Solid State Phenom., 151, 190–196. DOI: 10.4028/www.scientific.net/SSP.151.190.10.4028/www.scientific.net/SSP.151.190Search in Google Scholar

13. Kalska-Szostko, B., & Orzechowska, E. (2011). Surface modification of core–shell nanowire with protein adsorption. Mater. Chem. Phys., 129, 256–260. DOI: 10.1016/j.matchemphys.2011.04.01.Search in Google Scholar

14. Saedi, A., & Ghorbani, M. (2005). Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template. Mater. Chem. Phys., 91, 417–423. DOI: 10.1016/j.matchemphys.2004.12.001.10.1016/j.matchemphys.2004.12.001Search in Google Scholar

15. Kalska-Szostko, B., Wykowska, U., Piekut, K., & Zambrzycka, E. (2013). Stability of iron (Fe) nanowires. Colloid Surf. A-Physiochem. Eng. Asp., 416, 66–72. DOI: 10.1016/j.colsurfa.2012.10.019.10.1016/j.colsurfa.2012.10.019Search in Google Scholar

16. Charlot, F., Gaffet, E., Zeghmati, B., Bernard, F., & Niepce, J. C. (1999). Mechanically activated synthesis studied by X-ray diffraction in the Fe-Al system. Mater. Sci. Eng. A, 263, 279–288. DOI: 10.1016/S0921-5093(98)01017-X.10.1016/S0921-5093(98)01017-XSearch in Google Scholar

17. Matveev, V. V., Baranov, D. A., Yurkov, G. Y., Akatiev, N. G., Dotsenko, I. P., & Gubin, S. P. (2006). Cobalt nanoparticles with preferential hcp structure: A confirmation by X-ray diffraction and NMR. Chem. Phys. Lett., 422, 402–405. DOI: 10.1016/j.cplett.2006.02.099.10.1016/j.cplett.2006.02.099Search in Google Scholar

18. Smirnov, A., Hausner, D., Laffers, R., Strongin, D. R., & Schoonen, M. A. A. (2008). Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem. Trans., 9(5), 1–20. DOI: 10.1186/1467-4866-9-5.10.1186/1467-4866-9-5243095118489746Search in Google Scholar

19. Greenwood, N. N., & Gibb, T. C. (1971). Mössbauer spectroscopy. London: Chapman and Hall.10.1007/978-94-009-5697-1Search in Google Scholar

20. Korecki, J., & Gradmann, U. (1985). In situ Mossbauer analysis of hyperfine interaction near Fe (110) surfaces and interfaces. Phys. Rev. Lett., 55(22), 2491–2494. DOI: 10.1103/PhysRevLett.55.2491.10.1103/PhysRevLett.55.249110032158Search in Google Scholar

21. Li, Q. F., Wang, J. B., Yan, Z. J., & Xue, D. S. (2004). The effect of diameter on micro-magnetic properties of Fe0.68Ni0.32 nanowire arrays. J. Magn. Magn. Mater., 278, 323–327. DOI: 10.1016/j.jmmm.2003.12.1357.10.1016/j.jmmm.2003.12.1357Search in Google Scholar

22. de Oliveira, L. S., da Cunha, J. M. B., Spada, E. R., & Hallouche, B. (2007). Mössbauer spectroscopy and magnetic properties in thin films of FexNi100−x electroplated on silicon (1 0 0). Appl. Surf. Sci., 254, 347–350. DOI: 10.1016/j.apsusc.2007.07.093.10.1016/j.apsusc.2007.07.093Search in Google Scholar

23. Scorzelli, R. B., Souza Azevedo, I., Pereira, R. A., Perez, C. A. C., & Fernandes, A. A. R. (1994). Mössbauer spectroscopy study of the metallic particles extracted from the Antarctic chondrite Allan Hills-769. In Proceedings NIPR Symposium Antarct. Meteorites 7, 31 May–2 June 1993 (pp. 299–303). Tokyo: National Institute of Polar Research.Search in Google Scholar

24. Ping, J. Y., Rancourt, D. G., & Dunlap, R. A. (1992). Physical basis and break down of hyperfine field distribution analysis in fcc Fe-Ni (5–70 at%Fe). J. Magn. Magn. Mater., 103, 285–313. DOI: 10.1016/0304-8853(92)90201-X.10.1016/0304-8853(92)90201-XSearch in Google Scholar

25. Guenzburger, D., & Terrera, J. (2006). Theoretical investigation of Mössbauer hyperfine interactions in ordered FeNi and disordered Fe-Ni alloys. Hyperfine Interact., 168, 1159–1163. DOI: 10.1007/sI0751-006-9416-0.Search in Google Scholar

26. Häggström, L., Kalska, B., Blomquist, P., & Wappling, R. (2002). Magnetic anisotropy and magnetic fields in bcc Fe/Co (001) superlattices. J. Alloy. Compd., 347, 252–258. DOI: 10.1016/S0925-8388(02)00762-4.10.1016/S0925-8388(02)00762-4Search in Google Scholar

27. Kalska, B., Blomquist, P., Haggstrom, L., & Wappling, R. (2001). Interface roughness/intermixing and magnetic moments in a Fe/Co(001) superlattice. J. Phys.-Condens. Matter, 13, 2963–2970. DOI: 10.1088/0953-8984/13/13/310.10.1088/0953-8984/13/13/310Search in Google Scholar

28. Kalska, B., Haggstrom, L., Blomquist, P., & Wappling, R. (2000). Conversion electron Mössbauer spectroscopy studies of the magnetic moment distribution in Fe/V multilayers. J. Phys.-Condens. Matter, 12, 539–548. DOI: 10.1088/0953-8984/12/5/302.10.1088/0953-8984/12/5/302Search in Google Scholar

29. Hamrakulov, B., Kim, I., Lee, M. G., & Park, B. H. (2009). Electrodeposited Ni, Fe, Co and Cu single and multilayer nanowires arrays on anodic aluminium oxide template. Trans. Nonferrous Met. Soc. China, 19, 83–87. DOI: 10.1016/S1003-6326(10)60250-6.10.1016/S1003-6326(10)60250-6Search in Google Scholar

30. Leitao, D. C., Sousa, C. T., Ventura, J., Amaral, J. S., Carpineiro, F., Pirota, K. R., Vazquez, M., Sousa, J. B., & Aroujo, J. P. (2008). Characterization of electrodeposited Ni and Ni80Fe20 nanowires. J. Non-Cryst. Solids, 354, 5241–5243. DOI: 10.1016/j.jnoncrysol.2008.05.088.10.1016/j.jnoncrysol.2008.05.088Search in Google Scholar

eISSN:
0029-5922
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other