Otwarty dostęp

Identification and Adjustment of Guide Rail Geometric Errors Based on BP Neural Network


Zacytuj

[1] Okafor, A.C., Ertekin, Y.M. (2000). Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools & Manufacture, 40 (8), 1199-1213.10.1016/S0890-6955(99)00105-4Search in Google Scholar

[2] Tian, W., Gao, W., Zhang, D., Huang, T. (2014). A general approach for error modeling of machine tools. International Journal of Machine Tools & Manufacture, 79 (4), 17-23.10.1016/j.ijmachtools.2014.01.003Search in Google Scholar

[3] Ohta, H., Tanaka, K. (2010). Vertical stiffnesses of preloaded linear guideway type ball bearings incorporating the flexibility of the carriage and rail. Journal of Tribology, 132 (1), 547-548.10.1115/1.4000277Search in Google Scholar

[4] Rahmani, M., Bleicher, F. (2016). Experimental and numerical studies of the influence of geometric deviations in the performance of machine tools linear guides. Procedia CIRP, 41, 818-823.10.1016/j.procir.2015.08.089Search in Google Scholar

[5] Shamoto, E., Park, C.H., Moriwaki, T. (2001). Analysis and improvement of motion accuracy of hydrostatic feed table. CIRP Annals - Manufacturing Technology, 50 (1), 285-290.10.1016/S0007-8506(07)62123-4Search in Google Scholar

[6] Khim, G., Park, C.H., Shamoto, E., Kim, S.W. (2011). Prediction and compensation of motion accuracy in a linear motion bearing table. Precision Engineering, 35 (3), 393-399.10.1016/j.precisioneng.2010.12.006Search in Google Scholar

[7] Khim, G., Oh, J.S., Park, C.H. (2014). Analysis of 5-DOF motion errors influenced by the guide rails of an aerostatic linear motion stage. International Journal of Precision Engineering and Manufacturing, 15 (2), 283-290.10.1007/s12541-014-0336-7Search in Google Scholar

[8] Kim, G.H., Han, J.A., Lee, S.K. (2014). Motion error estimation of slide table on the consideration of guide parallelism and pad deflection. International Journal of Precision Engineering and Manufacturing, 15 (9), 1935-1946.10.1007/s12541-014-0548-xSearch in Google Scholar

[9] Li, J., Mao, K., Chen, Q., Nie, Y. (2015). Experimental research of large components of machine tools assembly stress distribution under different assembly process. Machine Tool & Hydraulics, 43 (21), 118-122.Search in Google Scholar

[10] Bosetti, P., Bruschi, S. (2012). Enhancing positioning accuracy of CNC machine tools by means of direct measurement of deformation. The International Journal of Advanced Manufacturing Technology, 58 (5), 651-662.10.1007/s00170-011-3411-6Search in Google Scholar

[11] Liu, Y., Liu, M., Yi, C., Chen, M. (2014). Measurement of the deformation field for machine tool based on optical fiber Bragg grating sensors. In International Conference on Innovative Design and Manufacturing, 13-15 August 2014. IEEE, Vol. 971-973, 222-226.10.1109/IDAM.2014.6912698Search in Google Scholar

[12] Chlebus, E., Dybala, B. (1999). Modelling and calculation of properties of sliding guideways. International Journal of Machine Tools & Manufacture, 39 (12), 1823-1839.10.1016/S0890-6955(99)00041-3Search in Google Scholar

[13] Majda, P. (2012). Relation between kinematic straightness errors and angular errors of machine tool. Advances in Manufacturing Science & Technology, 36, 47-53.Search in Google Scholar

[14] Majda, P. (2012). Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precision Engineering, 36 (3), 369-378.10.1016/j.precisioneng.2012.02.001Search in Google Scholar

[15] Shi, Y., Zhao, X., Zhang, H., Nie, Y., Zhang, D. (2016). A new top-down design method for the stiffness of precision machine tools. The International Journal of Advanced Manufacturing Technology, 83 (9), 1887-1904.10.1007/s00170-015-7705-ySearch in Google Scholar

[16] Zhupanska, O.I. (2011). Contact problem for elastic spheres: Applicability of the Hertz theory to non-small contact areas. International Journal of Engineering Science, 49 (7), 576-588.10.1016/j.ijengsci.2011.02.003Search in Google Scholar

[17] THK Co., Ltd. (2008). THK Linear Motion System Catalog.Search in Google Scholar

[18] Kowalik, M., Rucki, M., Paszta, P., Gołębski, R. (2016). Plastic deformations of measured object surface in contact with undeformable surface of measuring tool. Measurement Science Review, 16 (5), 254-259.10.1515/msr-2016-0031Search in Google Scholar

[19] Gawedzki, W., Tarnowski, J. (2015). Design and testing of the strain transducer for measuring deformations of pipelines operating in the mining-deformable ground environment. Measurement Science Review, 15 (5), 256-262.10.1515/msr-2015-0035Search in Google Scholar

[20] Fuh, K.H., Wang, S.B. (1997). Force modeling and forecasting in creep feed grinding using improved BP neural network. International Journal of Machine Tools & Manufacture, 37 (8), 1167-1178.10.1016/S0890-6955(96)00012-0Search in Google Scholar

[21] Basheer, I.A., Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43 (1), 3-31.10.1016/S0167-7012(00)00201-3Search in Google Scholar

[22] Rafiq, M.Y., Bugmann, G., Easterbrook, D.J. (2001). Neural network design for engineering applications. Computers & Structures, 79 (17), 1541-1552.10.1016/S0045-7949(01)00039-6Search in Google Scholar

[23] Tsui, K. (2007). Strategies for planning experiments using orthogonal arrays and confounding tables. Quality & Reliability Engineering, 4 (2), 113-122.Search in Google Scholar

[24] Ekinci, T.O., Mayer, J.R.R. (2007). Relationships between straightness and angular kinematic errors in machines. International Journal of Machine Tools & Manufacture, 47 (12-13), 1997-2004.10.1016/j.ijmachtools.2007.02.002Search in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing