Zacytuj

[1] Bojja, J., Kirkko-Jaakkola, M., Collin, J., Takala, J. (2014). Indoor localization methods using dead reckoning and 3D map matching. Journal of Signal Processing Systems, 76, 301-312.10.1007/s11265-013-0865-9Search in Google Scholar

[2] Borenstein, J., Feng, L. (1996). Measurement and correction of systematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation, 12 (6), 869-880.10.1109/70.544770Search in Google Scholar

[3] Brinkmann, S., Bodschwinna, H. (2003). Advanced Gaussian filters. In Advanced Techniques for Assessment Surface Topography. Butterworth-Heineman, 63-89.10.1016/B978-190399611-9/50004-9Search in Google Scholar

[4] Chen, X., Jia, Y. (2014). Indoor localization for mobile robots using lampshade corners as landmarks: Visual system calibration, feature extraction and experiments. International Journal of Control, Automation, and Systems, 12 (6), 1313-1322.10.1007/s12555-013-0076-ySearch in Google Scholar

[5] Dobrzanski, P., Pawlus, P. (2010). Digital filtering of surface topography: Part I. Separation of one-process surface roughness and waviness by Gaussian convolution, Gaussian regression and spline filters. Precision Engineering, 34 (3), 647-650.Search in Google Scholar

[6] Dobrzanski, P., Pawlus, P. (2010). Digital filtering of surface topography: Part II. Applications of robust and valley suppression filters. Precision Engineering, 34 (3), 651-658.Search in Google Scholar

[7] Epton, T., Hoover, A. (2012). Improving odometry using a controlled point laser. Autonomous Robots, 32, 165-172.10.1007/s10514-011-9272-xSearch in Google Scholar

[8] Jung, Ch., Moon, Ch., Jung, D., Choi, J., Chung, W. (2014). Design of test track for accurate calibration of two wheel differential mobile robots. International Journal of Precision Engineering and Manufacturing, 15 (1), 53-61.10.1007/s12541-013-0305-6Search in Google Scholar

[9] Kelly, A. (2004). Fast and easy systematic and stochastic odometry calibration. In International Conference on Intelligent Robots and Systems. IEEE, Vol. 4, 3188-3194.Search in Google Scholar

[10] Kelly, A. (2004). Linearized error propagation in odometry. International Journal of Robotics Research, 23 (2), 179-218.10.1177/0278364904041326Search in Google Scholar

[11] Knuth, J., Barooah, P. (2013). Error growth in position estimation from noisy relative pose measurements. Robotics and Autonomous Systems, 61, 229-244.10.1016/j.robot.2012.11.001Search in Google Scholar

[12] Krystek, M. (2000). Discrete linear profile filters. In X International Coloquium on Surfaces, Chemnitz, Germany, 145-152.Search in Google Scholar

[13] Martínez-Barbera, H., Herrero-Pérez, D. (2010). Autonomous navigation of an automated guided vehicle in industrial environments. Robotics and Computer-Integrated Manufacturing, 26, 296-311.10.1016/j.rcim.2009.10.003Search in Google Scholar

[14] Meng, Q., Bischoff, R. (2005). Odometry based pose determination and errors measurement for a mobile robot with two steerable drive wheels. Journal of Intelligent and Robotic Systems, 41 (4), 263-282.10.1007/s10846-005-3506-0Search in Google Scholar

[15] Muniandya, M., Muthusamyb, M. (2012). An innovative design to improve systematic odometry error in nonholonomic wheeled mobile robots. Procedia Engineering, 41, 436-442.10.1016/j.proeng.2012.07.195Search in Google Scholar

[16] Ojeda, L., Borenstein, J. (2004). Methods for the reduction of odometry errors in overconstrained mobile robots. Autonomous Robots, 16, 273-286.10.1023/B:AURO.0000025791.45313.01Search in Google Scholar

[17] Smieszek, M., Dobrzanska, M. (2015). Application of Kalman Filter in navigation process of automated guided vehicles. Metrology and Measurement Systems, 22 (3), 443-454.10.1515/mms-2015-0037Search in Google Scholar

eISSN:
1335-8871
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing