Otwarty dostęp

Magnetic Field Gradiometer with Sub-Micron Spatial Resolution Based on Caesium Vapour in an Extremely Thin Cell


Zacytuj

1. Mathé, V., Lévêque, F., and Druez, M. (2009). What interest to use caesium magnetometer instead of fluxgate gradiometer? Mémoire du sol, espace des homes, 33 (suppl.), 325-327.Search in Google Scholar

2. Corsini, E., Acosta, V., Baddour, N., Higbie, J., Lester, B., Licht, P., Patton, B., Prouty, M., and Budker, D. (2011). Search for plant biomagnetism with a sensitive atomic magnetometer. J. Appl. Phys. 109, 074701, DOI:10.1063/1.3560920.10.1063/1.3560920Search in Google Scholar

3. Kominis, I.K., Kornack, T.W., Allred J.C., and Romalis, M.V. (2003). A subfemtotesla multichannel atomic magnetometer. Nature 422, 596-599, DOI: 10. 1038/nature01484.Search in Google Scholar

4. Patton, B., Zhivun, E., Hovde, D.C., and Budker, D. (2014). All-optical vector atomic magnetometer. Phys. Rev. Lett. 113, 013001, DOI:10.1103/PhysRevLett.113.013001.10.1103/PhysRevLett.113.013001Search in Google Scholar

5. Lee, S.-K., Sauer, K.L., Seltzer, S.J., Alem, O., and Romalis, M.V. (2006). Subfemtotesla radio-frequency atomic magnetometer for detection of nuclear quadrupole resonance. Appl. Phys. Lett. 89, 214106, DOI:10.1063/1.2390643.10.1063/1.2390643Search in Google Scholar

6. Balabas, M.V., Budker, D., Kitching, J., Schwindt, P.D.D., and Stalnaker, J.E. (2006). Magnetometry with millimeter-scale anti-relaxation-coated alkali-metal vapor cells. DOI:10.1364/JOSAB. 23.001001.Search in Google Scholar

7. Sarkisyan, D., Bloch, D., Papoyan, A., and Ducloy, M. (2001). Sub-Doppler spectroscopy by sub-micron thin Cs vapor layer. Opt. Commun. 200, 201, DOI: 10.1016/S0030-4018(01)01604-2. 1010.1016/S0030-4018(01)01604-2Search in Google Scholar

8. Hakhumyan, G.T. (2012). Optical magnetometer with submicron spatial resolution based on Rb vapors. Journal of Contemporary Physics. 47 (3), 105-112, DOI: 10.3103/ S1068337212030024.Search in Google Scholar

9. Blushs, K., and Auzinsh, M. (2004). Validity of rate equations for Zeeman coherences for analysis of nonlinear interaction of atoms with broadband laser radiation. Phys. Rev. A, 69, 063806, DOI:10.1103/PhysRevA.69.063806.10.1103/PhysRevA.69.063806Search in Google Scholar

10. Auzinsh, M., Ferber, R., Gahbauer, F., Jarmola, A., and Kalvans, L. (2008). F-resolved magnetooptical resonances in the D1 excitation of caesium: Experiment and theory. Phys. Rev. A, 78, 013417, DOI: 10.1103/PhysRevA.78.013417.10.1103/PhysRevA.78.013417Search in Google Scholar

11. Auzinsh, M., Ferber, R., Gahbauer, F., Jarmola, A., and Kalvans, L. (2009). Nonlinear magnetooptical resonances at D1 excitation of 85Rb and 87Rb for partially resolved hyperfine F levels. Phys. Rev. A, 79, 053404, DOI: 10.1103/PhysRevA.79.053404.10.1103/PhysRevA.79.053404Search in Google Scholar

12. Auzinsh, M., Berzins, A., Ferber, R., Gahbauer, F., Kalvans, L., Mozers, A., and Opalevs, D. (2012). Conversion of bright magneto-optical resonances into dark resonances at fixed laser frequency for D2 excitation of atomic rubidium. Phys. Rev. A, 85, 033418, DOI:10.1103/PhysRevA.85.033418.10.1103/PhysRevA.85.033418Search in Google Scholar

13. Auzinsh, M., Ferber, R., Gahbauer, F., Jarmola, A., Kalvans, L., Papoyan, A., and Sarkisyan, D. (2010). Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell. Phys. Rev. A, 81, 033408, DOI:10.1103/PhysRevA.81.033408.10.1103/PhysRevA.81.033408Search in Google Scholar

eISSN:
0868-8257
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Physics, Technical and Applied Physics