1. bookTom 61 (2017): Zeszyt 3 (July 2017)
Informacje o czasopiśmie
Pierwsze wydanie
03 Apr 2012
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Copper and copper patina

Data publikacji: 22 Jul 2017
Tom & Zeszyt: Tom 61 (2017) - Zeszyt 3 (July 2017)
Zakres stron: 118 - 122
Informacje o czasopiśmie
Pierwsze wydanie
03 Apr 2012
Częstotliwość wydawania
4 razy w roku

1. Devantier, A. E., et al., Exploration and characterisation of novel bronze patinas derived from simple coordination complexes. Dalton Trans 2011, 40 (3), 614-622.10.1039/C0DT00793ESearch in Google Scholar

2. Gettens, R. J., et al., Patina: Nobel and Vile. Art and Technology 1970, 57-72.Search in Google Scholar

3. Livingston, R. A., Influence of the environment on the patina of the Statue of Liberty. Environ Sci Technol 1991, 25, 1400-1408.10.1021/es00020a006Search in Google Scholar

4. Atrens, A., et al., The chemistry of copper patination. Materal Forum 1997, 21, 57.Search in Google Scholar

5. Skennerton, G., et al., Atmospheric corrosion of copper at Heron Island. Mater. Lett. 1997, 30, 6.Search in Google Scholar

6. Hughes, R.; Rowe, M., Colouring, Bronzing and patination of metal. Crafts Council: 1982.Search in Google Scholar

7. Goidanich, S., et al., Effects of wax-based anti-graffiti on copper patina composition and dissolution during four years of outdoor urban exposure. Journal of Cultural Heritage 2010, 11 (3), 288-296.10.1016/j.culher.2010.02.001Search in Google Scholar

8. Muresan, L., et al., Protection of bronze covered with patina by innoxious organic substances. Electrochimica Acta 2007, 52 (27), 7770-7779.10.1016/j.electacta.2007.02.024Search in Google Scholar

9. de Oliveira, F. J. R., et al., Study of patina formation on bronze specimens. Materials Chemistry and Physics 2009, 115 (2-3), 761-770.10.1016/j.matchemphys.2009.02.035Search in Google Scholar

10. de la Fuente, D., et al., Morphological study of 16-year patinas formed on copper in a wide range of atmospheric exposures. Corrosion Science 2008, 50 (1), 268-285.10.1016/j.corsci.2007.05.030Search in Google Scholar

11. FitzGerald, K. P., et al., Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper. Corrosion Science 2006, 48 (9), 2480-2509.10.1016/j.corsci.2005.09.011Search in Google Scholar

12. Robbiola, L.; Portier, R., A global approach to the authentication of ancient bronzes based on the characterization of the alloy-patina-environment system. Journal of Cultural Heritage 2006, 7 (1), 1-12.10.1016/j.culher.2005.11.001Search in Google Scholar

13. Luciano, G., et al., Principal component analysis of colour measurements of patinas and coating systems for outdoor bronze monuments. Journal of Cultural Heritage 2009, 10 (3), 331-337.10.1016/j.culher.2008.10.004Search in Google Scholar

14. Hayez, V., et al., Study of copper nitrate-based patinas. Journal of Raman Spectroscopy 2006, 37 (10), 1211-1220.10.1002/jrs.1591Search in Google Scholar

15. Scott, D. A.; Getty Conservation, I., Copper and bronze in art: Corrosion, colorants, conservation. Getty Conservation Institute: Los Angeles, 2002.Search in Google Scholar

16. Marušić, K., et al., Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor. Electrochimica Acta 2009, 54 (27), 7106-7113.10.1016/j.electacta.2009.07.014Search in Google Scholar

17. Watanabe, M., et al., Microstructural analysis of artificially formed patinas on copper. Electrochem. Solid State Lett. 2002, 5 (8), B28-B31.Search in Google Scholar

18. Schlesinger, R., et al., Characterization of Artificially Produced Copper and Bronze Patina by XPS. Surface and Interface Analysis 2000, 30, 135-139.10.1002/1096-9918(200008)30:1<135::AID-SIA720>3.0.CO;2-VSearch in Google Scholar

19. Balta, I. Z., et al., Dynamic secondary ion mass spectrometry and X-ray photoelectron spectroscopy on artistic bronze and copper artificial patinas. Applied Surface Science 2009, 255 (12), 6378-6385.10.1016/j.apsusc.2009.02.020Search in Google Scholar

20. Noli, F., et al., Investigation of copper patinas using ion beam analysis and scanning electron microscopy. Surface and Interface Analysis 2005, 37 (3), 288-293.10.1002/sia.2017Search in Google Scholar

21. Graedel, T. E., et al., Copper patinas formed in the atmosphere - I. Intorduction. Corrosion Science 1987, 27 (7), 19.10.1016/0010-938X(87)90047-3Search in Google Scholar

22. Graedel, T. E., Copper patinas formed in the atmosphere - II. A quantitative assesment of mechanism. Corrosion Science 1987, 27 (7), 20.10.1016/0010-938X(87)90053-9Search in Google Scholar

23. Muller, A. J.; McCrory-Joy, C., Chromatographic analysis of copper patinas formed in the atmosphere. Corrosion Science 1987, 27 (7), 695-701.10.1016/0010-938X(87)90051-5Search in Google Scholar

24. Franey, J. P.; Davis, M. E., Metallographic studies of the copper patina formed in the atmosphere. Corrosion Science 1987, 27 (7), 10.10.1016/0010-938X(87)90048-5Search in Google Scholar

25. Persson, D.; Leygraf, C., Vibrational spectroscopy and XPS for atmospheric corrosion studies on copper. J. Electrochem. Soc. 1990, 137 (10), 3163-3169.Search in Google Scholar

26. Eriksson, P., et al., Initial Stages of Copper Corrosion in Humid Air Containing SO2 and NO2. J. Electrochem. Soc. 1993, 140 (1), 53-59.Search in Google Scholar

27. Askey, A., et al., The corrosion of iron and zinc by atmospheric hydrogen chloride. Corrosion Science 1993, 34 (2), 233-247.10.1016/0010-938X(93)90004-ZSearch in Google Scholar

28. Odnevall, I.; Leygraf, C., Formation of NaZn4Cl(OH)6SO4 · 6H2O in a marine atmosphere. Corrosion Science 1993, 34 (8), 1213-1229.10.1016/0010-938X(93)90082-RSearch in Google Scholar

29. Dante, J. F.; Kelly, R. G., The Evolution of the Adsorbed Solution Layer during Atmospheric Corrosion and Its Effects on the Corrosion Rate of Copper. J. Electrochem. Soc. 1993, 140 (7), 1890-1897.Search in Google Scholar

30. Feliu, S., et al., The prediction of atmospheric corrosion from meteorological and pollution parameters - II. Longterm forecasts. Corrosion Science 1993, 34 (3), 415-422.10.1016/0010-938X(93)90113-USearch in Google Scholar

31. Arroyave, C.; Morcillo, M., The effect of nitrogen oxides in atmospheric corrosion of metals. Corrosion Science 1995, 37 (2), 293-305.10.1016/0010-938X(94)00136-TSearch in Google Scholar

32. Odnevall, I.; Leygraf, C., Atmospheric Corrosion of Copper in a Rural Atmosphere. J. Electrochem. Soc. 1995, 142 (11), 3682-3689.Search in Google Scholar

33. Rickett, B. I.; Payer, J. H., Composition of Copper Tarnish Products Formed in Moist Air with Trace Levels of Pollutant Gas: Sulfur Dioxide and Sulfur Dioxide/Nitrogen Dioxide. J. Electrochem. Soc. 1995, 142 (11), 3713-3722.Search in Google Scholar

34. Salnick, A., et al., Photothermal studies of copper patina formed in the atmosphere. Corrosion Science 1995, 37 (5), 741-767.10.1016/0010-938X(95)80006-9Search in Google Scholar

35. Tidblad, J.; Graedel, T. E., Gildes model studies of aqueous chemistry. III. Initial SO2-induced atmospheric corrosion of copper. Corrosion Science 1996, 38 (12), 2201-2224.10.1016/S0010-938X(96)00082-0Search in Google Scholar

36. Wallinder, I. O.; Leygraf, C., A study of copper runoff in na urban atmosphere. Corrosion Science 1997, 39 (12), 14.10.1016/S0010-938X(97)00081-4Search in Google Scholar

37. Veleva, L., et al., Mechanism of copper patina formation in marine environments. Electrochimica Acta 1996, 41 (10), 1641-1645.10.1016/0013-4686(95)00417-3Search in Google Scholar

38. Strandberg, H.; Johansson, L. G., The Formation of Black Patina on Copper in Humid Air Containing Traces of SO2. J. Electrochem. Soc. 1997, 144 (1), 81-89.Search in Google Scholar

39. Oesch, S.; Faller, M., Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures. Corrosion Science 1997, 39 (9), 1505-1530.10.1016/S0010-938X(97)00047-4Search in Google Scholar

40. Vilche, J. R., et al., A survey of argentinean atmospheric corrosion: II - Copper samples. Corrosion Science 1997, 39 (4), 655-679.10.1016/S0010-938X(96)00150-3Search in Google Scholar

41. Itoh, J., et al., In situ simultaneous measurement with irras and qcm for investigation of corrosion of copper in a gaseous environment. Corrosion Science 1997, 39 (1), 193-197.10.1016/S0010-938X(97)89249-9Search in Google Scholar

42. Itoh, J., et al., Surface layers formed initially on copper in air containing water vapor and SO2 as determined by IRRAS and 2D-IR. Journal of Electroanalytical Chemistry 1999, 473 (1-2), 256-264.10.1016/S0022-0728(99)00157-6Search in Google Scholar

43. Mendoza, A. R.; Corvo, F., Outdoor and indoor atmospheric corrosion of carbon steel. Corrosion Science 1999, 41 (1), 75-86.10.1016/S0010-938X(98)00081-XSearch in Google Scholar

44. Morcillo, M., et al., Salinity in marine atmospheric corrosion: its dependence on the wind regime existing in the site. Corrosion Science 2000, 42 (1), 91-104.10.1016/S0010-938X(99)00048-7Search in Google Scholar

45. Odnevall Wallinder, I., et al., Effects of exposure direction and inclination on the runoff rates of zinc and copper roofs. Corrosion Science 2000, 42 (8), 1471-1487.10.1016/S0010-938X(99)00145-6Search in Google Scholar

46. Aastrup, T., et al., In Situ Studies of the Initial Atmospheric Corrosion of Copper Influence of Humidity, Sulfur Dioxide, Ozone, and Nitrogen Dioxide. J. Electrochem. Soc. 2000, 147 (7), 2543-2551.Search in Google Scholar

47. Aastrup, T., et al., Experimental in situ studies of copper exposed to humidified air. Corrosion Science 2000, 42 (6), 957-967.10.1016/S0010-938X(99)00125-0Search in Google Scholar

48. Wadsak, M., et al., Combined in-situ investigations of atmospheric corrosion of copper with SFM and IRAS coupled with QCM. Surface Science 2000, 454, 246-250.10.1016/S0039-6028(00)00081-9Search in Google Scholar

49. Itoh, J., et al., The influence of oxide layers on initial corrosion behavior of copper in air containing water vapor and sulfur dioxide. Corrosion Science 2000, 42 (9), 1539-1551.10.1016/S0010-938X(00)00015-9Search in Google Scholar

50. Watanabe, M., et al., Characterization of Corrosion Products Formed on Copper in Urban, Rural/Coastal, and Hot Spring Areas. J. Electrochem. Soc. 2001, 148 (12), B522-B528.Search in Google Scholar

51. Stoch, A., et al., FTIR study of copper patinas in the urban atmosphere. Journal of Molecular Structure 2001, 596 (1-3), 201-206.10.1016/S0022-2860(01)00718-9Search in Google Scholar

52. He, W., et al., A laboratory study of copper and zinc runoff during first flush and steady-state conditions. Corrosion Science 2001, 43 (1), 127-146.10.1016/S0010-938X(00)00066-4Search in Google Scholar

53. Xu, N., et al., Laboratory observation of dew formation at an early stage of atmospheric corrosion of metals. Corrosion Science 2002, 44 (1), 163-170.10.1016/S0010-938X(01)00018-XSearch in Google Scholar

54. Watanabe, M., et al., Analysis of Tarnish Films on Copper Exposed in Hot Spring Area. J. Electrochem. Soc. 2002, 149 (3), B97-B102.Search in Google Scholar

55. Picciochi, R., et al., The initial stages of the atmospheric corrosion of copper at an urban atmosphere. Portugaliae Electrochimica Acta 2002, 20 (2), 77-87.10.4152/pea.200202077Search in Google Scholar

56. Watanabe, M., et al., Differences between corrosion products formed on copper exposed in Tokyo in summer and winter. Corrosion Science 2003, 45 (7), 1439-1453.10.1016/S0010-938X(02)00245-7Search in Google Scholar

57. Nassau, K., et al., The characterization of patina components by X ray diffraction and evolved gas analysis.pdf>. Corrosion Science 1987, 27 (7), 669-684.10.1016/0010-938X(87)90049-7Search in Google Scholar

58. Tylecote, R. F., The effect of soil conditions on the longterm corrosion of buried tin-bronzes and copper. Journal of Archaeological Science 1979, 6 (4), 345-368.10.1016/0305-4403(79)90018-9Search in Google Scholar

59. Savada, M., Coposition and corrosion of ancient bronzes. Variation of the contents in the main elements between the corrosion layer and the basis alloy. Nara Kokuritsu bunkazai Kankyusho 30th Antiverasary Bull 1983, 1221-1232.Search in Google Scholar

60. Scott, D. A., Periodic corrosion phenomena in bronze antiquities. Studies in Conservation 1985, 30 (2), 49-57.10.1179/sic.1985.30.2.49Search in Google Scholar

61. Robbiola, L., et al., Etude de la corrosion de bronzes archeologiques du Fort-Harrouard: alteration externeet mecanisme d’alteration stratifiee. Studies in Conservation 1988, 33 (4), 205-215.10.1179/sic.1988.33.4.205Search in Google Scholar

62. Costa, J. M., Progress in the understanding and prevention of corrosion. 1. Inst. of Materials: 1993.Search in Google Scholar

63. Taylor, R. J.; MacLeod, I. D., Corrosion of Bronzes on Shipwrecks. Corrosion 1985, 41 (2), 100-104.10.5006/1.3581970Search in Google Scholar

64. Scott, D. A., et al., Ancient & historic metals. The Getty conservation institute: 1991; Vol. 1, p 84.Search in Google Scholar

65. Gettens, R. J., The corrosion products of an ancient Chinese bronze. Journal of Chemical Education 1951, 28 (2), 67.10.1021/ed028p67Search in Google Scholar

66. Scott, D. A., et al., Ancient an historic metals. The Getty consrvation institute: 1994; Vol. 1.Search in Google Scholar

67. Couture-Rigert, D. E., et al., An investigation into the cause of corrosion on indoor bronze sculpture. Studies in Conservation 2012, 57 (3), 142-163.10.1179/2047058412Y.0000000004Search in Google Scholar

68. Robbiola, L., et al. In New model of outdoor bronze corrosion and its implications for conservation, ICOM Committee for Conservation tenth triennial meeting, Washington DC, United States, 1993-08-22; Washington DC, United States, 1993; pp 796-802.Search in Google Scholar

69. Bracci, S., et al., A multi-analytical approach to monitor three outdoor contemporary artworks at the Gori Collection (Fattoria di Celle, Santomato, Pistoia, Italy). Microchemical Journal 2016, 124, 878-888.10.1016/j.microc.2015.07.008Search in Google Scholar

70. Chiavari, C., et al., Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochimica Acta 2007, 52 (27), 7760-7769.10.1016/j.electacta.2006.12.053Search in Google Scholar

71. Knotková, D., et al., Transformace vrstev umělé zelené patiny. Sborník konference AKI-Koroze a protikorozní ochrana kovů, Pelhřimov 2001, 10.Search in Google Scholar

72. Watanabe, M., et al., Evolution of patinas on copper exposed in a suburban area. Corrosion Science 2007, 49 (2), 766-780.10.1016/j.corsci.2006.05.044Search in Google Scholar

73. Núñez, L., et al., Corrosion of copper in seawater and its aerosols in a tropical island. Corrosion Science 2005, 47 (2), 461-484.10.1016/j.corsci.2004.05.015Search in Google Scholar

74. Zhang, X., et al., Determination of instantaneous corrosion rates and runoff rates of copper from naturally patinated copper during continuous rain events. Corrosion Science 2002, 44, 21.10.1016/S0010-938X(02)00015-XSearch in Google Scholar

75. Sandberg, J., et al., Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment. Corrosion Science 2006, 48 (12), 4316-4338.10.1016/j.corsci.2006.04.004Search in Google Scholar

76. Robbiola, L., et al., Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corrosion Science 1998, 40 (12), 29.10.1016/S0010-938X(98)00096-1Search in Google Scholar

77. Souissi, N., et al., Comparaison between archaeological and artificially aged bronze interfaces. Materials and Corrosion 2006, 57 (10), 794-799.10.1002/maco.200503974Search in Google Scholar

78. Hernández, R. d. P. B., et al., Electrochemical impedance spectroscopy investigation of the electrochemical behaviour of copper coated with artificial patina layers and submitted to wet and dry cycles. Electrochimica Acta 2011, 56 (7), 2801-2814.10.1016/j.electacta.2010.12.059Search in Google Scholar

79. Bendezú, R. d. P., et al., EIS and Microstructural Characterization of Artificial Nitrate Patina Layers Produced. Journal of Brazilian Chemical Society 2007, 18 (1), 13.10.1590/S0103-50532007000100006Search in Google Scholar

80. López-Delgado, A., et al., Influence of acetic and formic vapours on patinated artistic bronze. Journal of materials science letters 1997, 19, 4.Search in Google Scholar

81. Rahmouni, K., et al., Protection of ancient and historic bronzes by triazole derivatives. Electrochimica Acta 2009, 54 (22), 5206-5215.10.1016/j.electacta.2009.02.027Search in Google Scholar

82. Robbiola, L., et al., New insight into the nature and properties of pale green surfaces of outdoor bronze monuments. Applied Physics A 2008, 92 (1), 161-169.10.1007/s00339-008-4468-4Search in Google Scholar

83. Serghini-Idrissi, M., et al., Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta 2005, 50 (24), 4699-4709.10.1016/j.electacta.2005.01.050Search in Google Scholar

84. Chiavari, C., et al., Atmospheric corrosion of fire-gilded bronze: corrosion and corrosion protection during accelerated ageing tests. Corrosion Science 2015, 100, 435-447.10.1016/j.corsci.2015.08.013Search in Google Scholar

85. de la Roja, J. M., et al., Application of Raman microscopy to the characterization of different verdigris variants obtained using recipes from old treatises. Spectrochim Acta A Mol Biomol Spectrosc 2007, 68 (4), 1120-5.10.1016/j.saa.2007.06.053Search in Google Scholar

86. Frost, R. L., et al., Raman spectroscopy of the copper chloride minerals nantokite, eriochalcite and claringbullite - implications for copper corrosion. Neues Jahrbuch für Mineralogie - Monatshefte 2003, 2003 (10), 433-445.10.1127/0028-3649/2003/2003-0433Search in Google Scholar

87. Frost, R. L., et al., Raman spectroscopy of gerhardtite at 298 and 77 K. Journal of Raman Spectroscopy 2004, 35 (11), 991-996.10.1002/jrs.1246Search in Google Scholar

88. Frost, R. L., Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2003, 59 (6), 1195-1204.10.1016/S1386-1425(02)00315-3Search in Google Scholar

89. Hayez, V., et al., Micro Raman spectroscopy used for the study of corrosion products on copper alloys: study of the chemical composition of artificial patinas used for restoration purposes. Analyst 2005, 130 (4), 550-6.10.1039/b419080gSearch in Google Scholar

90. Ropret, P.; Kosec, T., Raman investigation of artificial patinas on recent bronze - Part I: climatic chamber exposure. Journal of Raman Spectroscopy 2012, 43 (11), 1578-1586.10.1002/jrs.4068Search in Google Scholar

91. Fitzgerald, K. P., et al., Chemistry of copper patination. Corrosion Science 1998, 40 (12), 2029-2050.10.1016/S0010-938X(98)00093-6Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo