Otwarty dostęp

Effects of Fusarium verticillioides and Lactobacillus Strains Inoculation on Growth and Antioxidant Enzymes Activity of Zea mays Plants


Zacytuj

Aebi H. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126. DOI: 10.1016/s0076-6879(84)05016-3.10.1016/s0076-6879(84)05016-3Open DOISearch in Google Scholar

Bacon C.W., Hinton D.M., Richardson M.D. 1994. A corn seedling assay for resistance to Fusarium moniliforme. Plant Disease 78: 302–305. DOI: 10.1094/PD-78-0302.10.1094/PD-78-0302Open DOISearch in Google Scholar

Bacon C.W., Yates I.E., Hinton D.M., Meredith F. 2001. Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives 109, Supplement 2: 325–332. DOI: 10.1289/ehp.01109s2325.10.1289/ehp.01109s2325Open DOISearch in Google Scholar

Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276–287. DOI: 10.1016/0003-2697(71)90370-8.10.1016/0003-2697(71)90370-8Open DOISearch in Google Scholar

Chance B., Maehly A.C. 1955. Assay of catalases and peroxidases. Methods in Enzymology 2: 764–775. DOI: 10.1016/S0076-6879(55)02300-8.10.1016/S0076-6879(55)02300-8Open DOISearch in Google Scholar

Crowley S., Mahony J., van Sinderen D. 2013. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science and Technology 33: 93–109. DOI: 10.1016/j.tifs.2013.07.004.10.1016/j.tifs.2013.07.004Open DOISearch in Google Scholar

Das K., Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scav-engers during environmental stress in plants. Frontiers in Environmental Science 2: 53. DOI: 10.3389/fenvs.2014.00053.10.3389/fenvs.2014.00053Open DOISearch in Google Scholar

Franz C.M.A.P., Cho G-S., Holzapfel W.H., Gálvez A. 2010. Safety of lactic acid bacteria. In: Mozzi F., Raya R.R., Vignolo G.M. (Eds.), Biotechnology of Lactic Acid Bacteria: Novel Applications. Wiley-Blackwell, UK. DOI: 10.1002/9780813820866.ch19.10.1002/9780813820866.ch19Open DOISearch in Google Scholar

Gajbhiye M.H., Kapadnis B.P. 2016. Antifungal-activity-producing lactic acid bacteria as biocontrol agents in plants. Biocontrol Science and Technology 26: 1451–1470. DOI: 10.1080/09583157.2016.1213793.10.1080/09583157.2016.1213793Open DOISearch in Google Scholar

García-Limones C., Dorado G., Navas-Cortés J., Jiménez-Díaz R.M., Tena M. 2009. Changes in the re-dox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes. Plant Biology 11: 194–203. DOI: 10.1111/j.1438-8677.2008.00095.x.10.1111/j.1438-8677.2008.00095.x19228326Open DOISearch in Google Scholar

Gherbawy Y.A., El-Tayeb M.A., Maghraby T.A., She-bany Y.M., El-Deeb B.A. 2012. Response of antioxidant enzymes and some metabolic activities in wheat to Fusarium spp. infections. Acta Agronomica Hungarica 60: 319–333. DOI: 10.1556/AAgr.60.2012.4.3.10.1556/AAgr.60.2012.4.3Open DOISearch in Google Scholar

Guo J., Brosnan B., Furey A., Arendt E., Murphy P., Coffey A. 2012. Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioengineered Bugs 3(2): 104–113. DOI: 10.4161/bbug.19624.10.4161/bbug.19624335733022539027Open DOISearch in Google Scholar

Gupta R., Srivastava S. 2014. Antifungal effect of anti-microbial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiology 42: 1–7. DOI: 10.1016/j.fm.2014.02.005.10.1016/j.fm.2014.02.00524929709Open DOISearch in Google Scholar

Hamed H.A., Moustafa Y.A., Abdel-Aziz S.M. 2011. In vivo efficacy of lactic acid bacteria in biological control against Fusarium oxysporum for protection of tomato plant. Life Science Journal 8: 462–468. DOI: 10.7537/marslsj080411.60.Search in Google Scholar

Kar M., Mishra D. 1976. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology 57: 315–319. DOI: 10.1104/pp.57.2.315.10.1104/pp.57.2.31554201516659474Open DOISearch in Google Scholar

Kharazian Z.A., Jouzani G.S., Aghdasi M., Khorvash M., Zamani M, Mohammadzadeh H. 2017. Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biological Control 110: 33–43. DOI: 10.1016/j.bio-control.2017.04.004.10.1016/j.bio-control.2017.04.004Open DOISearch in Google Scholar

Kıvanc M., Kıvanc S.A., Pektas S. 2014. Screening of Lactic acid bacteria for antifungal activity against fungi. Journal of Food Processing & Technology 5(3): 310, 4 p. DOI: 10.4172/2157-7110.1000310.10.4172/2157-7110.1000310Open DOISearch in Google Scholar

Kumar M., Yadav V., Tuteja N., Johri A.K. 2009. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155: 780–790. DOI: 10.1099/mic.0.019869-0.10.1099/mic.0.019869-019246749Open DOISearch in Google Scholar

Limanska N., Ivanytsia T., Basiul O., Krylova K., Biscola V., Chobert J-M., et al. 2013. Effect of Lactobacillus plantarum on germination and growth of tomato seedlings. Acta Physiologiae Plantarum 35: 1587–1595. DOI: 10.1007/s11738-012-1200-y.10.1007/s11738-012-1200-yOpen DOISearch in Google Scholar

Mohammadi-Gholami A., Shams-Ghahfarokhi M., Kachuei R., Razzaghi-Abyaneh M. 2013. Isolation and identification of Fusarium species from maize and wheat and assessment of their ability to produce fumonisin B1. Modares Journal of Medical Sciences: Pathobiology 16: 53–64.Search in Google Scholar

Nakano Y., Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22: 867–880. DOI: 10.1093/oxfordjournals.pcp.a076232.10.1093/oxfordjournals.pcp.a076232Open DOISearch in Google Scholar

Narasimha Murthy K., Malini M., Savitha J., Srinivas C. 2012. Lactic acid bacteria (LAB) as plant growth promoting bacteria (PGPB) for the control of wilt of tomato caused by Ralstonia solanacearum. Pest Management in Horticultural Ecosystems 18: 60–65.Search in Google Scholar

Oliveira P.M., Zannini E., Arendt E.K. 2014. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products. Food Microbiology 37: 78–95. DOI: 10.1016/j.fm.2013.06.003.10.1016/j.fm.2013.06.00324230476Open DOISearch in Google Scholar

Oren L., Ezrati S., Cohen D., Sharon A. 2003. Early events in the Fusarium verticillioides-maize inter-action characterized by using a green fluorescent protein-expressing transgenic isolate. Applied and Environmental Microbiology 69: 1695–1701. DOI: 10.1128/AEM.69.3.1695-1701.2003.10.1128/AEM.69.3.1695-1701.200315008112620861Open DOISearch in Google Scholar

Patil M.M., Pal A., Anand T., Ramana K.V. 2010. Isolation and characterization of lactic acid bacteria from curd and cucumber. Indian Journal of Bio-technology 9: 166–172.Search in Google Scholar

Pereira P., Ibáñez S.G., Agostini E., Etcheverry M. 2011a. Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities. Applied Soil Ecology 51: 52–59. DOI: 10.1016/j.apsoil.2011.08.007.10.1016/j.apsoil.2011.08.007Open DOISearch in Google Scholar

Pereira P., Nesci A., Castillo C., Etcheverry M. 2011b. Field studies on the relationship between Fusarium verticillioides and maize (Zea mays L.): Effect of biocontrol agents on fungal infection and toxin content of grains at harvest. International Journal of Agronomy, Article ID 486914, 7 p. DOI: 10.1155/2011/486914.10.1155/2011/486914Open DOISearch in Google Scholar

Russo P., Arena M.P., Fiocco D., Capozzi V., Drider D., Spano G. 2017. Lactobacillus plantarum with broad antifungal activity: a promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology 247: 48–54. DOI: 10.1016/j.ijfoodmicro.2016.04.027.10.1016/j.ijfoodmicro.2016.04.02727240933Open DOISearch in Google Scholar

Sorahinobar M., Niknam V., Ebrahimzadeh H., Soltanloo H. 2015. Differential antioxidative responses of susceptible and resistant wheat cultivars against Fusarium head blight. International Journal of Farming and Allied Sciences 4: 239–243.Search in Google Scholar

Torres M.A. 2010. ROS in biotic interactions. Physiologia Plantarum 138: 414–429. DOI: 10.1111/j.1399-3054.2009.01326.x.10.1111/j.1399-3054.2009.01326.x20002601Open DOISearch in Google Scholar

Tropcheva R., Nikolova D., Evstatieva Y., Danova S. 2014. Antifungal activity and identification of Lactobacilli, isolated from traditional dairy product “katak”. Anaerobe 28: 78–84. DOI: 10.1016/j.anaerobe.2014.05.010.10.1016/j.anaerobe.2014.05.01024887637Open DOISearch in Google Scholar

Varsha K.K., Priya S., Devendra L., Nampoothiri K.M. 2014. Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties. Applied Biochemistry and Biotechnology 172: 3402–3413. DOI: 10.1007/s12010-014-0779-4.10.1007/s12010-014-0779-424532445Open DOISearch in Google Scholar

Virtanen T., Pihlanto A., Akkanen S., Korhonen H. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of Applied Microbiology 102: 106–115. DOI: 10.1111/j.1365-2672.2006.03072.x.10.1111/j.1365-2672.2006.03072.x17184325Open DOISearch in Google Scholar

Xing J., Wang G., Zhang Q., Liu X., Gu Z., Zhang H., et al. 2015. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS ONE 10: e0119058, 16 p. DOI: 10.1371/journal.pone.0119058.10.1371/journal.pone.0119058436624725789875Search in Google Scholar

Yan B., Zhao J., Fan D., Tian F., Zhang H., Chen W. 2017. Antifungal activity of Lactobacillus plantarum against Penicillium roqueforti in vitro and the preservation effect on Chinese steamed bread. Journal of Food Processing and Preservation 41(3): e12969, 9 p. DOI: 10.1111/jfpp.12969.10.1111/jfpp.12969Open DOISearch in Google Scholar

eISSN:
2300-5009
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Plant Science, Ecology, other