Zacytuj

Alagna, V., Bagarello, V., Di Prima, S., Iovino, M., 2016. Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrol. Process., 30, 263–275.10.1002/hyp.10607Search in Google Scholar

Angulo-Jaramillo, R., Bagarello, V., Iovino, M., Lassabatere, L., 2016. Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing, AG Switzerland, 386 p.10.1007/978-3-319-31788-5Search in Google Scholar

Bagarello, V., Castellini, M., Di Prima, S., Iovino, M., 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501.10.1016/j.geoderma.2013.08.032Search in Google Scholar

Beven, K., Germann, P., 2013. Macropores and water flow in soils revisited. Water Resour. Res., 49, 6, 3071–3092.10.1002/wrcr.20156Search in Google Scholar

Brooks, E.S., Boll, J., McDaniel, P.A., 2004. A hillslope-scale experiment to measure lateral saturated hydraulic conductivity. Water Resour. Res., 40, W04208. DOI: 10.1029/2003WR002858.10.1029/2003WR002858Search in Google Scholar

Buczko, U., Bens, O., Fischer, H., Hüttl, R.F., 2002. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma, 109, 1–2, 1–18.10.1016/S0016-7061(02)00137-4Search in Google Scholar

Buczko, U., Bens, O., Hüttl, R.F., 2005. Variability of soil water repellency in sandy forest soils with different stand structure under Scots pine (Pinus sylvestris) and beech (Fagus sylvatica). Geoderma, 126, 3–4, 317–336.10.1016/j.geoderma.2004.10.003Search in Google Scholar

Císlerová, M., Šimůnek, J., Vogel, T., 1988. Changes of steady-state infiltration rates in recurrent ponding infiltration experiments. J. Hydrol., 104, 1–4, 1–16.10.1016/0022-1694(88)90154-0Search in Google Scholar

Clothier, B.E., Green, S.R., Deurer, M., 2008. Preferential flow and transport in soil: progress and prognosis. Eur. J. Soil Sci., 59, 1, 2–13.10.1111/j.1365-2389.2007.00991.xSearch in Google Scholar

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resour. Res., 30, 9, 2507–2517.10.1029/94WR00749Search in Google Scholar

Dohnal, M., Jelinkova, V., Snehota, M., Dusek, J., Brezina, J., 2013. Tree-dimensional numerical analysis of water flow affected by entrapped air: Application of noninvasive imaging techniques. Vadose Zone J., 12, 1.10.2136/vzj2012.0078Search in Google Scholar

Gerke, H.H., 2006. Review Article: Preferential flow descriptions for structured soils. J. Plant Nutr. Soil Sci., 169, 382–400.10.1002/jpln.200521955Search in Google Scholar

Gerke, H.H., Köhne, J.M., 2002. Estimating hydraulic properties of soil aggregate skins from sorptivity and water retention. Soil Sci. Soc. Am. J., 66, 26–36.10.2136/sssaj2002.2600Search in Google Scholar

Gerke, H.H., Germann, P., Nieber, J., 2010. Preferential and unstable flow: from the pore to the catchment scale. Vadose Zone J., 9, 2, 207–212.10.2136/vzj2010.0059Search in Google Scholar

Goutaland, D., Winiarski, T., Lassabatere, L., Dubé, J.S., Angulo-Jaramillo, R., 2013. Sedimentary and hydraulic characterization of a heterogeneous glaciofluvial deposit: Application to the modeling of unsaturated flow. Eng. Geol., 166, 127–139.10.1016/j.enggeo.2013.09.006Search in Google Scholar

Green, T.R., Ahuja, L.R., Benjamin, J.G., 2003. Advances and challenges in predicting agricultural management effects on soil hydraulic properties. Geoderma, 116, 1–2, 3–27.10.1016/S0016-7061(03)00091-0Search in Google Scholar

Hallett, P.D., Nunan, N., Douglas, J.T., Young, I.M., 2004. Millimeter-scale spatial variability in soil water sorptivity: Scale, surface elevation, and subcritical repellency effects. Soil Sci. Soc. Am. J., 68, 2, 352–358.10.2136/sssaj2004.3520Search in Google Scholar

Haws, N.W., Liu, B., Boast, C.W., Rao, P.S.C., Kladivko, E.J., Franzmeier, D.P., 2004. Spatial variability and measurement scale of infiltration rate on an agricultural landscape contribution of the Indiana Agricultural Research Programs. Soil Sci. Soc. Am. J., 68, 1818–1826.10.2136/sssaj2004.1818Search in Google Scholar

Hillel, D., 1998. Environmental Soil Physics. Academic Press, San Diego, 771 p.Search in Google Scholar

Hodnett, M.G., Tomasella, J., 2002. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedotransfer functions developed for tropical soils. Geoderma, 108, 3, 155–180.10.1016/S0016-7061(02)00105-2Search in Google Scholar

Jarvis, N.J., 2007. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur. J. Soil Sci., 58, 523–546.10.1111/j.1365-2389.2007.00915.xSearch in Google Scholar

Jarvis, N.J., Zavattaro, L., Rajkai, K., Reynolds, W.D., Olsen, P.A., Mcgechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P.B., Jacques, D., 2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma, 108, 1–17.10.1016/S0016-7061(01)00154-9Search in Google Scholar

Jarvis, N., Koestel, J., Messing, I., Moeys, J., Lindahl, A., 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci., 17, 12, 5185–5195.10.5194/hess-17-5185-2013Search in Google Scholar

Köhne, J.M., Köhne, S., Šimůnek, J., 2009. A review of model applications for structured soils: a) Water flow and tracer transport. J. Cont. Hydrol., 104, 1–36.10.1016/j.jconhyd.2008.10.003Search in Google Scholar

Lassabatere, L., Angulo-Jaramillo, R., Ugalde, J.M.S., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments - BEST. Soil Sci. Soc. Am. J., 70, 2, 521–532.10.2136/sssaj2005.0026Search in Google Scholar

Lassabatere, L., Yilmaz, D., Peyrard, X., Peyneau, P.E., Lenoir, T., Šimůnek, J., Angulo-Jaramillo, R., 2014. New analytical model for cumulative infiltration into dual-permeability soils. Vadose Zone J., 13, 1–15.10.2136/vzj2013.10.0181Search in Google Scholar

Leeds-Harrison, P.B., Youngs, E.G., Udin, B., 1994. A device for determining the sorptivity of soil aggregates. Eur. J. Soil Sci., 45, 269–272.10.1111/j.1365-2389.1994.tb00509.xSearch in Google Scholar

Letey, J., Carrillo, M.L.K., Pang, X.P., 2000. Approaches to characterize the degree of water repellency. J. Hydrol., 231–232, 0, 61–65.10.1016/S0022-1694(00)00183-9Search in Google Scholar

Lichner, L., Hallett, P.D., Drongová, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sandy soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016Search in Google Scholar

Lin, H., Flühler, H., Otten, W., Vogel, H.-J., 2010. Soil architecture and preferential flow across scales. J. Hydrol., 393, 1–2.10.1016/j.jhydrol.2010.07.026Search in Google Scholar

Minasny, B., Hartemink, A.E., 2011. Predicting soil properties in the tropics. Earth-Science Reviews, 106, 1, 52–62.10.1016/j.earscirev.2011.01.005Search in Google Scholar

Nielsen, D., Biggar, J., Erh, K., 1973. Spatial variability of fieldmeasured soil-water properties. Hilgardia, 42, 7, 215–259.10.3733/hilg.v42n07p215Search in Google Scholar

Reynolds, W.D., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S., 2000. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil Sci. Soc. Am. J., 64, 2, 478–484.10.2136/sssaj2000.642478xSearch in Google Scholar

Šimůnek, J., van Genuchten, M.T., Šejna, M., 2016. Recent developments and applications of the HYDRUS computer software Packages. Vadose Zone J., DOI: 10.2136/vzj2016.04.0033.10.2136/vzj2016.04.0033Search in Google Scholar

Sněhota, M., Císlerová, M., Amin, M.H.G., Hall, L.D., 2010. Tracing the entrapped air in heterogeneous soil by means of magnetic resonance imaging. Vadose Zone J., 9, 2, 373–384.10.2136/vzj2009.0103Search in Google Scholar

Tillman, R.W., Scotter, D.R., Wallis, M.G., Clothier, B.E., 1989. Water-repellency and its measurement by using intrinsic sorptivity. Aust. J. Soil Res., 27, 4, 637–644.10.1071/SR9890637Search in Google Scholar

Verbist, K.M.J., Cornelis, W.M., Torfs, S., Gabriels, D., 2013. Comparing methods to determine hydraulic conductivities on stony soils. Soil Sci. Soc. Am. J., 77, 1, 25–42.10.2136/sssaj2012.0025Search in Google Scholar

Vogelmann, E.S., Reichert, J.M., Prevedello, J., Consensa, C.O.B., Oliveira, A.É., Awe, G.O., Mataix-Solera, J., 2013. Threshold water content beyond which hydrophobic soils become hydrophilic: The role of soil texture and organic matter content. Geoderma, 209–210, 177–187.10.1016/j.geoderma.2013.06.019Search in Google Scholar

Wosten, J.H.M., Pachepsky, Y.A., Rawls, W.J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol., 251, 123–150.10.1016/S0022-1694(01)00464-4Search in Google Scholar

eISSN:
0042-790X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other