Otwarty dostęp

Episodic runoff generation at Central European headwater catchments studied using water isotope concentration signals


Zacytuj

Blazkova, S., Beven, K., Tacheci, P., Kulasova, A., 2002. Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL? Water Resour. Res., 38, 11, 1257. DOI: 10.1029/2001WR000912.10.1029/2001WR000912Search in Google Scholar

Bullock, A., Acreman, M., 2003. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci., 7, 358–389.10.5194/hess-7-358-2003Search in Google Scholar

Burns, D.A., Plummer, L.N., McDonnell, J.J., Busenberg, E., Casile, G.C., Kendall, C. et al., 2003. The geochemical evolution of riparian ground water in a forested piedmont catchment. Ground Water, 41, 7, 913–925. DOI: 10.1111/j.1745-6584.2003.tb02434.x.10.1111/j.1745-6584.2003.tb02434.xSearch in Google Scholar

Camacho Suarez, V.V., Saraiva Okello, A.M.L., Wenninger, J. W., Uhlenbrook, S., 2015. Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations. Hydrol. Earth Syst. Sci., 19, 4183–4199.10.5194/hess-19-4183-2015Search in Google Scholar

Cislerova, M., Sanda, M., Blazkova, S., Mazac, O., Grünwald, A., Zeithammerova, J., Tacheci, P., 1998. Ecological aspects of the water resources protection: Transport processes in a watershed affected by abrupt changes of runoff conditions (Jizera Mountains). Res. Rep. VaV/510/3/96-DÚ 01. Ministry of Environment of the Czech Republic, Prague. (In Czech.)Search in Google Scholar

Craig, H., 1961. Isotopic variations in meteoric waters. Science, 133, 1702–1703.10.1126/science.133.3465.170217814749Search in Google Scholar

Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 16, 4, 436–468.10.3402/tellusa.v16i4.8993Search in Google Scholar

Dincer, T., Payne, B.R., Florkows, T., Martinec, J., Tongiorg, E., 1970. Snowmelt runoff from measurements of tritium and oxygen-18. Water Resour. Res., 6, 110–124.10.1029/WR006i001p00110Search in Google Scholar

Dusek, J., Vogel, T., Sanda, M., 2012. Hillslope hydrograph analysis using synthetic and natural oxygen-18 signatures. J. Hydrol., 475, 415–427. DOI: 10.1016/j.jhydrol.2012.10.025.10.1016/j.jhydrol.2012.10.025Search in Google Scholar

Dusek, J., Vogel, T., 2016. Hillslope-storage and rainfall-amount thresholds as controls of preferential stormflow, J. Hydrol., 534, 590–605. DOI: 10.1016/j.jhydrol.2016.01.047.10.1016/j.jhydrol.2016.01.047Search in Google Scholar

Glynn, P.D., Plummer, L.N., 2005. Geochemistry and the understanding of ground-water systems. Hydrogeology J., 13, 263–287.10.1007/s10040-004-0429-ySearch in Google Scholar

Holko, L., Dóša, M., Michalko, J., Kostka, Z., Sanda, M., 2012. Isotopes of oxygen-18 and deuterium in precipitation in Slovakia. J. Hydrol. Hydromech., 60, 4, 265–276.10.2478/v10098-012-0023-2Search in Google Scholar

Hrachowitz, M., Soulsby, C., Tetzlaff, D., Dawson, J.J.C., Dunn, S.M., Malcolm, I.A., 2009. Using longer term tracer data to understand transit times in contrasting headwater catchments. J. Hydrol., 367, 237–248.10.1016/j.jhydrol.2009.01.001Search in Google Scholar

Hrncir, M., Sanda, M., Kulasova, A., Cislerova, M., 2010. Runoff formation in a small catchment at hillslope and catchment scales. Hydrol. Process., 24, 2248–2256. DOI: 10.1002/hyp.7614.10.1002/hyp.7614Search in Google Scholar

Kendall, C., Sklash, M.G., Bullen, T.D., 1995. Isotope tracers of water and solute sources in catchments. In: Solute Modelling in Catchment Systems. J. Wiley & Sons, New York, pp. 261–303.Search in Google Scholar

Kirchner, J.W., Tetzlaff, D., Soulsby, C., 2010. Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments. Hydrol. Process., 24, 1631–1645. DOI: 10.1002/hyp.7676.10.1002/hyp.7676Search in Google Scholar

Kirchner, J.W., 2016a. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol. Earth Syst. Sci., 20, 279–297.10.5194/hess-20-279-2016Search in Google Scholar

Kirchner, J.W., 2016b. Aggregation in environmental systems - Part 2: Catchment mean transit times and young water fractions under hydrologic non-stationarity. Hydrol. Earth Syst. Sci., 20, 299–328.10.5194/hess-20-299-2016Search in Google Scholar

Kurtz, A.M., Bahr, J.M., Carpenter, Q.J., Hunt, R.J., 2007. The importance of subsurface geology for water source and vegetation communities in Cherokee Marsh, Wisconsin. Wetlands, 27, 189–202.10.1672/0277-5212(2007)27[189:TIOSGF]2.0.CO;2Search in Google Scholar

Lamacova, A., Hruska, J., Kram, P., Stuchlik, E., Farda, A., Chuman, T., Fottova, D., 2014. Runoff trends analysis and future projections of hydrological patterns in small forested catchments. Soil & Water Res., 9, 169–181.10.17221/110/2013-SWRSearch in Google Scholar

Maloszewski, P., Zuber, A., 1996. Lumped parameter models for the interpretation of environmental tracer data. In: Manual on Mathematical Models in Isotope Hydrology. IAEA TEC DOC 910, Vienna, pp. 9–58.Search in Google Scholar

McCartney, M.P., Neal, C., Neal, M., 1998. Use of deuterium to understand runoff generation in a headwater catchment containing a dambo. Hydrol. Earth Syst. Sci., 2, 65–76.10.5194/hess-2-65-1998Search in Google Scholar

McGlynn, B., McDonnell, J., Stewart, M., Seibert, J., 2003. On the relationships between catchment scale and streamwater mean residence time. Hydrol. Process., 17, 175–181.10.1002/hyp.5085Search in Google Scholar

McGuire, K.J., McDonnell, J.J., 2006. A review and evaluation of catchment transit time modeling. J. Hydrol., 330, 543–563.10.1016/j.jhydrol.2006.04.020Search in Google Scholar

Pinder, G.F., Jones, J.F., 1969. Determination of the groundwater component of peak discharge from the chemistry of total runoff water. Water Resour. Res., 5, 438–455.10.1029/WR005i002p00438Search in Google Scholar

Sanda, M., Cislerova, M., 2009. Transforming hydrographs in the hillslope subsurface. J. Hydrol. Hydromech., 57, 264–275.10.2478/v10098-009-0023-zSearch in Google Scholar

Sanda, M., Kulasova, A., Cislerova, M., 2009. Hydrological processes in the subsurface investigated by water isotopes and silica. Soil & Water Res., 4, 83–92.10.17221/472-SWRSearch in Google Scholar

Sanda, M., Vitvar, T., Kulasova, A., Jankovec, J., Cislerova, M., 2014. Run-off formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrol. Process., 28, 3217–3229. DOI: 10.1002/hyp.9847.10.1002/hyp.9847Search in Google Scholar

Stockinger, M.P., Bogena, H.R., Lucke, A., Diekkruger, B., Weiler, M., Vereecken, H., 2014. Seasonal soil moisture patterns: Controlling transit time distributions in a forested headwater catchment. Water Resour. Res., 50, 5270–5289.10.1002/2013WR014815Search in Google Scholar

Tesar, M., Sir, M., Prazak, J., Lichner, L., 2004. Instability driven flow and runoff formation in a small catchment. Geologica Acta, 2, 147–156.Search in Google Scholar

Tetzlaff, D., Seibert, J., Soulsby, C., 2009. Inter-catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm mountains, Scotland. Hydrol. Processes, 23, 1874–1886.10.1002/hyp.7318Search in Google Scholar

Tromp-van Meerveld, H.J., McDonnell, J.J., 2006. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour. Res., 42, W02411. DOI: 10.1029/2004WR003800.10.1029/2004WR003800Search in Google Scholar

Urban, L., 2014. Evaluation of runoff conditions in Liz catchment using stable isotopes. Bachelor Thesis. CTU in Prague, Prague, Czech Republic.Search in Google Scholar

Vogel, T., Sanda, M., Dusek, J., Dohnal, M., Votrubova, J., 2010. Using oxygen-18 to study the role of preferential flow in the formation of hillslope runoff. Vadose Zone J., 9, 252–259. DOI: 10.2136/vzj2009.0066.10.2136/vzj2009.0066Search in Google Scholar

Wenninger, J., Uhlenbrook, S., Lorentz, S., Leibundgut, Ch., 2008. Identification of runoff generation processes using combined hydrometric, tracer and geophysical methods in a headwater catchment in South Africa. Hydrol. Sci. J., 53, 65–80. DOI: 10.1623/hysj.53.1.65.10.1623/hysj.53.1.65Search in Google Scholar

Zuecco, G., Penna, D., Borga, M., van Meerveld, H.J., 2015. A versatile index to characterize hysteresis between hydrological variables at the runoff event timescale. Hydrol. Process. DOI: 10.1002/hyp.10681.10.1002/hyp.10681Search in Google Scholar

eISSN:
0042-790X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other