Zacytuj

Azamathulla, H.M., Ahmad, Z., 2013. Estimation of critical velocity for slurry transport through pipeline using adaptive neuro-fuzzy interference system and gene-expression programming. Journal of Pipeline Systems Engineering and Practice, 131–137.10.1061/(ASCE)PS.1949-1204.0000123Search in Google Scholar

Berg, C.H., 1998. Pipelines as transportation systems. In: Proceedings of the European Mining Course. IHC-MTI, Kinderdijk, the Netherlands.Search in Google Scholar

Charles, M.E., 1970. Transport of solids by pipeline. Hydrotransport 1. BHRA, Cranfield.Search in Google Scholar

Davies, J.T., 1987. Calculation of critical velocities to maintain solids in suspension in horizontal pipes. Chemical Engineering Science, 42, 7, 1667–1670.10.1016/0009-2509(87)80171-9Search in Google Scholar

Durand, R., 1953. Basic Relationships of the Transportation of Solids in Pipes - Experimental Research. In: Proceedings of the International Association of Hydraulic Research. Minneapolis.Search in Google Scholar

Durand, R., Condolios, E., 1952. Etude experimentale du refoulement des materieaux en conduites en particulier des produits de dragage et des schlamms. [Experimental study of the discharge pipes materieaux especially products of dredging and slurries]. Deuxiemes Journees de l'Hydraulique, 27–55. (In French.)Search in Google Scholar

Fuhrboter, A., 1961. Über die Förderung von Sand-Wasser-Gemischen in Rohrleitungen. [On the advances of sand - water mixtures in pipelines]. Mitteilungen des Franzius-Instituts, H. 19.(In German.)Search in Google Scholar

Garcia, M.H., 2008. Sedimentation Engineering (Vol. 110). ASCE Manuals & Reports on Engineering Practise No. 110.Search in Google Scholar

Gibert, R., 1960. Transport hydraulique et refoulement des mixtures en conduites. [Hydraulic transport and discharge pipes of mixtures]. Annales des Ponts et Chausees, 130, 3, 307–374, 130, 4, 437–494. (In French.)Search in Google Scholar

Gillies, R.G., 1993. Pipeline flow of coarse particles, PhD Thesis. University of Saskatchewan, Saskatoon.Search in Google Scholar

Gogus, M., Kokpinar, M.A., 1993. Determination of critical flow velocity in slurry transporting pipeline systems. In: Proceeding of the 12th International Conference on Slurry Handling and Pipeline Transport. British Hydraulic Research Group, Bedfordshire, UK, pp. 743–757.Search in Google Scholar

Graf, W.H., Robinson, M., Yucel, O., 1970. The critical deposit velocity for solid-liquid mixtures. Hydrotransport 1. BHRA, Cranfield, UK, pp. H5-77–H5-88.Search in Google Scholar

Hepy, F.M., Ahmad, Z., Kansal, M.L., 2008. Critical velocity for slurry transport through pipeline. Dam Engineering, 19, 3, 169–184.Search in Google Scholar

Jufin, A.P., Lopatin, N.A., 1966. O projekte TUiN na gidrotransport zernistych materialov po stalnym truboprovodam. [TUiN project on hydrotransport of grain materials in steel tubes]. Gidrotechniceskoe Strojitelstvo, 9, 49–52. (In Russian.)Search in Google Scholar

Kokpinar, M.A., Gogus, M., 2001. Critical velocity in slurry transport in horizontal pipelines. Journal of Hydraulic Engineering, 127, 9, 763–771.10.1061/(ASCE)0733-9429(2001)127:9(763)Search in Google Scholar

Lahiri, S.K., 2009. Study on slurry flow modelling in pipeline. National Institute of Technology, Durgapur, India.Search in Google Scholar

Miedema, S.A., 2012a. Constructing the Shields Curve: Part A Fundamentals of the Sliding, Rolling and Lifting Mechanisms for the Entrainment of Particles. Journal of Dredging Engineering, 12., 1–49.Search in Google Scholar

Miedema, S.A., 2012b. Constructing the Shields Curve: Part B Sensitivity Analysis, Exposure & Protrusion Levels, Settling Velocity, Shear Stress & Friction Miedema, S.A., 2014 Velocity, Erosion Flux and Laminar Main Flow. Journal of Dredging Engineering, 12, 50–92.Search in Google Scholar

Miedema, S.A., 2014. An analytical approach to explain the Fuhrboter equation. Maritime Engineering, 167, 2, 1–14.10.1680/maen.13.00023Search in Google Scholar

Miedema, S.A., 2015a. A head loss model for homogeneous slurry transport. Journal of Hydrology and Hydromechanics, 1, 1–12.10.1515/johh-2015-0005Search in Google Scholar

Miedema, S.A., 2015b. Head loss model for slurry transport in the heterogeneous regime. Journal of Ocean Engineering, 12., 50–92.Search in Google Scholar

Miedema, S.A., 2015c. The Slip Ratio or Holdup Function in Slurry Transport. Dredging Summit and Expo 2015. WEDA, Houston, Texas, USA, p. 12.Search in Google Scholar

Miedema, S.A., Matousek, V., 2014. An explicit formulation of bed friction factor for sheet flow. In: Proc. 15th International Freight Pipeline Society Symposium, IFPS, Prague, Czech Republic, p. 17.Search in Google Scholar

Miedema, S.A., Ramsdell, R.C., 2013. A head loss model for slurry transport based on energy considerations. In: Proc. XX World Dredging Conference, WODA, Brussels, Belgium, p. 14.Search in Google Scholar

Miedema, S.A., Ramsdell, R.C., 2014a. An analysis of the hydrostatic approach of wilson for the friction of a sliding bed. WEDA/TAMU. WEDA, Toronto, Canada, p. 21.Search in Google Scholar

Miedema, S.A., Ramsdell, R.C., 2014b. The Delft Head Loss & Limit Deposit Velocity Model. In: Hydrotransport, BHR Group, Denver, USA, p. 15.Search in Google Scholar

Newitt, D.M., Richardson, M.C., Abbott, M., Turtle, R.B., 1955. Hydraulic conveying of solids in horizontal pipes. Transactions of the Institution of Chemical Engineers, 33, 93–110.Search in Google Scholar

Oroskar, A.R., Turian, R.M., 1980. The hold up in pipeline flow of slurries. AIChE, 26, 550–558.10.1002/aic.690260405Search in Google Scholar

Parzonka, W., Kenchington, J.M., Charles, M.E., 1981. Hydrotransport of solids in horizontal pipes: Effects of solids concentration and particle size on the deposit velocity. Canadian Journal of Chemical Engineering, 59, 291–296.10.1002/cjce.5450590305Search in Google Scholar

Poloski, A.P., Etchells, A.W., Chun, J., Adkins, H.E., Casella, A.M., Minette, M.J., Yokuda, S., 2010. A pipeline transport correlation for slurries with small but dense particles. Canadian Journal of Chemical Engineering, 88, 182–189.10.1002/cjce.20260Search in Google Scholar

Ramsdell, R.C., Miedema, S.A., 2013. An overview of flow regimes describing slurry transport. In: WODCON XX, WODA, Brussels, Belgium, p. 15.Search in Google Scholar

Sanders, R.S., Sun, R., Gillies, R.G., McKibben, M., Litzenberger, C., Shook, C.A., 2004. Deposition velocities for particles of intermediate size in turbulent flows. In: Hydrotransport 16, BHR Group, Santiago, Chile, pp. 429– 442.Search in Google Scholar

Schiller, R.E., Herbich, J.B., 1991. Sediment Transport in Pipes. Handbook of Dredging. McGraw-Hill, New York.Search in Google Scholar

Shook, C.A., Gillies, R.G., Sanders, R.S., 2002. Pipeline Hydrotransport with Application in the Oil Sand Industry. SRC Publication 11508-1E02, Saskatchewan Research Council, Saskatoon, Canada.Search in Google Scholar

Souza Pinto, T.C., Moraes Junior, D., Slatter, P.T., Leal Filho, L.S., 2014. Modelling the critical velocity for heterogeneous flow of mineral slurries. International Journal of Multiphase Flow, 65, 31–37.10.1016/j.ijmultiphaseflow.2014.05.013Search in Google Scholar

Thomas, A.D., 1979. Predicting the deposit velocity for horizontal turbulent pipe flow of slurries. International Journal of Multiphase Flow, 5, 113–129.10.1016/0301-9322(79)90040-5Search in Google Scholar

Thomas, A.D., 2014. Slurries of most interest to the mining industry flow homogeneously and the deposit velocity is the key parameter. In: HydroTransport 19, BHR Group, Denver, Colorado, USA, pp. 239–252.Search in Google Scholar

Thomas, D.G., 1962. Transport characteristics of suspensions: Part VI. Minimum velocity for large particle size suspensions in round horizontal pipes. A.I.Ch.E. Journal, 8, 3, 373–378.10.1002/aic.690080323Search in Google Scholar

Thomas, D.G., 1965. Transport characteristics of suspensions: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloidal Sciences, 20, 267–277.10.1016/0095-8522(65)90016-4Search in Google Scholar

Turian, R.M., Hsu, F. L., Ma, T.W., 1987. Estimation of the critical velocity in pipeline flow of slurries. Powder Technology, 51, 35–47.10.1016/0032-5910(87)80038-4Search in Google Scholar

Wasp, E.J., Slatter, P.T., 2004. Deposition velocities for small particles in large pipes. In: Proc. 12th International Conference on Transport & Sedimentation of Solid Particles, Prague, Czech Republic, pp. 20–24.Search in Google Scholar

Wasp, E.J., Kenny, J.P., Aude, T.C., Seiter, R.H., Jacques, R.B., 1970. Deposition velocities transition velocities and spatial distribution of solids in slurry pipelines. In: Hydro Transport 1, paper H42, BHRA Fluid Engineering, Coventry, pp. 53–76.Search in Google Scholar

Wasp, E.J., Kenny, J.P., Gandhi, R.L., 1977. Solid liquid flow slurry pipeline transportation. Transactions Technical Publications.Search in Google Scholar

Wilson, K.C., 1979. Deposition limit nomograms for particles of various densities in pipeline flow. In: Hydrotransport 6, BHRA, Canterbury, UK, p. 12.Search in Google Scholar

Wilson, K.C., Judge, D.G., 1976. New techniques for the scale-up of pilot plant results to coal slurry pipelines. In: Proceedings International Symposium on Freight Pipelines, University of Pensylvania, Washington DC, USA, pp. 1–29.Search in Google Scholar

Wilson, K.C., Judge, D.G., 1977. Application of analytical model to stationary deposit limit in sand water slurries. In: Dredging Technology, BHRA Fluid Engineering, College Station, Texas, USA, pp. J1 1–12.Search in Google Scholar

Wilson, K.C., Addie, G.R., Clift, R., 1992. Slurry Transport using Centrifugal Pumps. Elsevier Applied Sciences, New York.Search in Google Scholar

Wilson, W.E., 1942. Mechanics of flow with non colloidal inert solids. Transactions ASCE, 107, 1576–1594.10.1061/TACEAT.0005556Search in Google Scholar

Yagi, T., Okude, T., Miyazaki, S., Koreishi, A., 1972. An Analysis of the Hydraulic Transport of Solids in Horizontal Pipes. Nagase, Yokosuka, Japan. Report of the Port & Harbour Research Institute, Vol. 11, No. 3.Search in Google Scholar

Zandi, I., Govatos, G., 1967. Heterogeneous flow of solids in pipelines. Proc. ACSE, J. Hydraul. Div., 93(HY3), 145–159.10.1061/JYCEAJ.0001608Search in Google Scholar

eISSN:
0042-790X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other