1. bookTom 7 (2017): Zeszyt 3 (July 2017)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2449-6499
Pierwsze wydanie
30 Dec 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

MapReduce and Semantics Enabled Event Detection using Social Media

Data publikacji: 20 Mar 2017
Tom & Zeszyt: Tom 7 (2017) - Zeszyt 3 (July 2017)
Zakres stron: 201 - 213
Otrzymano: 01 Jan 2016
Przyjęty: 04 Jul 2016
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2449-6499
Pierwsze wydanie
30 Dec 2014
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

[1] J. Wen and B. Lee, Event Detection in Twitter, In Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, 2011, 401-408.10.1609/icwsm.v5i1.14102Search in Google Scholar

[2] T. Sakaki, M. Okazaki, and Y. Matsuo, Earthquake shakes Twitter users: real-time event detection by social sensors, In Proceedings of the 19th International Conference on World Wide Web, 2010, 851-860.10.1145/1772690.1772777Search in Google Scholar

[3] Q. Zhao and P. Mitra, Event Detection and Visualization for Social Text Streams, In Proceedings of the International AAAI Conference on Weblogs and Social Media, 2007, 26-28.Search in Google Scholar

[4] G. Kumaran and J. Allan, Text classification and named entities for new event detection, In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2004, 297-304.10.1145/1008992.1009044Search in Google Scholar

[5] R. Parikh and K. Karlapalem, Et: events from tweets. In Proceedings of the 22nd International Conference on World Wide Web companion, 2013, 613-620.10.1145/2487788.2488006Search in Google Scholar

[6] G. Fung, J. Yu, P. Yu, and H. Lu, Parameter free bursty events detection in text streams, In Proceedings of the 31st International Conference on Very Large Databases, 2005, 181-192.Search in Google Scholar

[7] A. Guille and C. Favre, Mention-anomaly-based event detection and tracking in twitter, Advances in Social Networks Analysis and Mining(ASONAM), 2014, 375-382.10.1109/ASONAM.2014.6921613Search in Google Scholar

[8] X. Wang, F. Zhu, J. Jiang and S. Li, Real time event detection in twitter, In: Web-Age Information Management, Springer, Berlin Heidelberg, 2013, 502-513.10.1007/978-3-642-38562-9_51Search in Google Scholar

[9] A. Ritter, S. Clark and O. Etzioni, Named entity recognition in tweets: an experimental study, In Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2011, 1524-1534.Search in Google Scholar

[10] J. Kleinberg, Bursty and hierarchical structure in streams, Data Mining and Knowledge Discovery 7, no. 4, 2003, 373-397.10.1023/A:1024940629314Search in Google Scholar

[11] PearAnalytics. Twitter study - august 2009, http://www.pearanalytics.com/wpcontent/uploads/2009/08/Twitter-Study-August-2009.pdf, 2009Search in Google Scholar

[12] R. Li, S. Wang, H. Deng, R. Wang and K. Chang, Towards social user profiling: unified and discriminative influence model for inferring home locations. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, 1023-1031.10.1145/2339530.2339692Search in Google Scholar

[13] Japan Earthquake, 2011, http://en.wikipedia.org/wiki/2011_T%C5%8Dhoku_earthquake_and_tsunamiSearch in Google Scholar

[14] Death of Bin Ladin, 2011, http://en.wikipedia.org/wiki/Death_of_Osama_bin_LadenSearch in Google Scholar

[15] F. Chen and D. Neill, Non-parametric scan statistics for event detection and forecasting in heterogeneous social media graphs. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, 1166-1175.10.1145/2623330.2623619Search in Google Scholar

[16] S. Levine, How fast the news spreads through social media, In http://blog.sysomos.com/2011/05/02/how-fast-the-news-spreads-through-social-media/, 2012.Search in Google Scholar

[17] J. Benhardus and J. Kalita, Streaming trend detection in twitter, International Journal of Web Based Communities 9, no. 1, 2013, 122-139.10.1504/IJWBC.2013.051298Search in Google Scholar

[18] D, Shamma, L. Kennedy and E. Churchill, Peaks and persistence: modeling the shape of microblog conversations, In Proceedings of the ACM 2011 conference on Computer supported cooperative work, 2011, 355-358.10.1145/1958824.1958878Search in Google Scholar

[19] J. Lau, N. Collier and T. Baldwin, On-line Trend Analysis with Topic Models:\# twitter Trends Detection Topic Model Online, In COLING, 2012, 1519-1534.Search in Google Scholar

[20] T. Lappas, B. Arai, M. Platakis, D. Kotsakos and D. Gunopulos, On burstiness-aware search for document sequences, In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2009, 477-486.10.1145/1557019.1557075Search in Google Scholar

[21] D. Gruhl, R. Guha, D. Liben-Nowell and A. Tomkins, Information diffusion through blogspace, In Proceedings of the 13th International Conference on World Wide Web, 2004, 491-501.10.1145/988672.988739Search in Google Scholar

[22] Y. Hu, A. John, D. Seligmann and F. Wang, What Were the Tweets About? Topical Associations between Public Events and Twitter Feeds, In: ICWSM, 2012.Search in Google Scholar

[23] C. Li, A. Sun and A. Datta. Twevent: segment-based event detection from tweets, In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, 2012, 155-164.10.1145/2396761.2396785Search in Google Scholar

[24] A. Kaplan and M. Haenlein, The early bird catches the news: Nine things you should know about micro-blogging. Business Horizons 54, no. 2, 2011, 105-113.10.1016/j.bushor.2010.09.004Search in Google Scholar

[25] Y. Teh, M. Jordan, M. Beal and D. Blei, Hierarchical dirichlet processes, Journal of the American Statistical Association 101, no. 476, 200610.1198/016214506000000302Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo