Otwarty dostęp

Optically stimulated luminescence techniques applied to the dating of the fall of meteorites in Morasko


Zacytuj

Fig. 1

Photography from the Energy Dispersive Analyser (EDS), performed on a 970 g meteorite. Characteristic structures can be observed (photo M. Nowak, IG UAM, meteorite cover structure interpretation W. Stankowski). 1 – an iron-nickel alloy; 1a – detach fragments of the alloy; 2a – the molten alloy zone; 2b – the “semi-molten” zone – molten-alloy matter and the grains of material from the fall place; 2c – the tear-away fragments of 2b; 3 – the sintered zone of local matter.
Photography from the Energy Dispersive Analyser (EDS), performed on a 970 g meteorite. Characteristic structures can be observed (photo M. Nowak, IG UAM, meteorite cover structure interpretation W. Stankowski). 1 – an iron-nickel alloy; 1a – detach fragments of the alloy; 2a – the molten alloy zone; 2b – the “semi-molten” zone – molten-alloy matter and the grains of material from the fall place; 2c – the tear-away fragments of 2b; 3 – the sintered zone of local matter.

Fig. 2

The most interesting meteorite (34 kg) used in this investigation, sized 28×24×18 cm. The original photo taken from Karwowski et al. 2011, with the consent of the editorial office of the Meteorites magazine.
The most interesting meteorite (34 kg) used in this investigation, sized 28×24×18 cm. The original photo taken from Karwowski et al. 2011, with the consent of the editorial office of the Meteorites magazine.

Fig. 3

The distribution of ages as relative probability-density functions (Berger, 2010) for the investigated 34 kg meteorite samples.
The distribution of ages as relative probability-density functions (Berger, 2010) for the investigated 34 kg meteorite samples.

Fig. 4

The distribution of ages as relative probability-density functions (Berger, 2010) for the investigated 34 kg meteorite samples put together on one graph.
The distribution of ages as relative probability-density functions (Berger, 2010) for the investigated 34 kg meteorite samples put together on one graph.

Fig. 5

The distribution of ages as relative probability-density functions (Berger, 2010) for the investigated soil samples.
The distribution of ages as relative probability-density functions (Berger, 2010) for the investigated soil samples.

The dose rate results of the analysed samples and their age estimation.

Sample nameDose rate for age calculation (Gy/ka)Equivalent dose (Gy)Age (ka) CAM
GdTL 2476 (meteorite 34 kg)1.27 ± 0.116.9 ± 0.45.4 ± 0.6
GdTL 2477 (meteorite 34 kg)1.36 ± 0.129.6 ± 1.07.0 ± 0.9
GdTL 2478 (meteorite 34 kg)1.43 ± 0.1329.5 ± 2.420.5 ± 2.5
GdTL 2479 (meteorite 34 kg)1.42 ± 0.1230.5 ± 3.321.4 ± 2.9
GdTL 2480 (meteorite 34 kg)1.14 ± 0.105.8 ± 0.45.0 ± 0.5
GdTL 2481 (meteorite 34 kg)1.33 ± 0.1811.4 ± 1.28.5 ± 1.5
GdTL 2482 (surrounding meteorite 261 kg)1.67 ± 0.1718.1 ± 1.610.8 ± 1.5
GdTL 2483 (surrounding meteorite 261 kg)1.58 ± 0.159.4 ± 1.15.9 ± 0.9
GdTL 2484 (meteorite 690 g)1.12 ± 0.1124.9 ± 2.022.2 ± 2.9
GdTL 2485 (surrounding meteorite 34 kg)2.40 ± 0.198.5 ± 1.03.5 ± 0.5
GdTL 2486 (surrounding meteorite 34 kg)3.21 ± 0.2417.0 ± 1.25.2 ± 0.5
GdTL 2487 (surrounding meteorite 34 kg)3.79 ± 0.2614.7 ± 1.63.8 ± 0.5
GdTL 2488 (surrounding meteorite 34 kg)4.37 ± 0.3011.3 ± 0.52.5 ± 0.2
GdTL 2489 (surrounding meteorite 34 kg)3.84 ± 0.2959.5 ± 4.415.4 ± 1.6
GdTL 2490 (surrounding meteorite 34 kg)2.22 ± 0.176.8 ± 0.73.0 ± 0.4
GdTL 2491 (surrounding meteorite 34 kg)3.17 ± 0.2448.7 ± 4.115.3 ± 1.7
GdTL 2492 (meteorite 34 kg)1.04 ± 0.1079.0 ± 8.075.9 ± 10.7
GdTL 2493 (meteorite 970 g)1.34 ± 0.1337.2 ± 1.927.6 ± 3.0
eISSN:
1897-1695
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Geosciences, other