U-Pb geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting of Gandab volcanic rocks, northeastern Iran
Data publikacji: 16 lis 2017
Zakres stron: 269 - 286
Otrzymano: 26 paź 2016
Przyjęty: 17 mar 2017
DOI: https://doi.org/10.1515/geochr-2015-0061
Słowa kluczowe
© 2016 A. Entezari Harsini.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
According to limited geochronology data, magmatic activity in the eastern Iran started in the late Jurassic (Esmaiely
The Iranian plateau surrounded between the Arabian plate to the southwest, the Eurasia plate to the northeast, the Indian oceanic plate to the south, and the Helmand/Afghanistan block to the east (Saadat
As shown in
Simplified structural map of Iran (compiled from Ruttner and Stöcklin, 1967, Berberian and King, 1981, Alavi, 1991) and location of the Gandab prospecting area in the Northeast of Iran.
163 samples were collected from the study area. Standard petrographic thin sections were prepared from these samples. The samples were examined in the laboratory of the Ferdowsi University of Mashhad, using standard techniques of optical mineralogy to determine their textures, mineral contents and rock type.
After excluding weathered and altered samples, twenty Samples with no or minimum signs of alteration were selected for chemical analysis from various types of rock units. The selected samples were crushed and powdered by mild steel, and sent to kansaran Binaloud Company (Tehran, Iran) to analyze major oxides by XRF spectrometry. As well, these samples were sent to Acme laboratories (Vancouver, Canada) for trace element analysis by ICP mass spectrometry (Acme labs code 4B03 Research ICP/MS) that is carried out with lithium metaborate-tetraborate fusion and nitric acid digestion.
Geographic location, name, and symbol of the analyzed samples in the Gandab volcanic rocks.Sample Longitude (E) Latitude (N) Rock type Symbol GCh-171 58°44′25″ 35°48′59″ Pyroxene andesite GCh-92 58°44′27″ 35°48′39″ Pyroxene andesite GCh-119 58°43′39″ 35°47′37″ Hornblende pyroxene olivine trachy andesite basalt GCh-154 58°41′42″ 35°50′53″ Hornblende pyroxene olivine trachy andesite basalt GCh-131 58°42′08″ 35°49′23″ Olivine hornblende trachy andesite basalt GCh-179 58°41′24″ 35°49′24″ Olivine hornblende trachy andesite basalt GCh-60 58°42′49″ 35°49′55″ Pyroxene hornblende trachy andesite GCh-17 58°43′12″ 35°49′49″ Pyroxene hornblende trachy andesite GCh-140 58°42′34″ 35°50′50″ Hornblende andesite GCh-35 58°42′58″ 35°50′02″ Hornblende andesite GCh-160 58°41′38″ 35°50′03″ Hornblende trachy andesite GCh-183 58°43′12″ 35°49′33″ Hornblende trachy andesite GCh-16 58°43′27″ 35°49′49″ Trachy andesite GCh-71 58°43′14″ 35°49′31″ Trachy andesite GCh-40 58°43′09″ 35°50′03″ Trachy andesite GCh-31 58°43′02″ 35°50′09″ Trachy andesite GCh-57 58°42′44″ 35°50′18″ Hornblende pyroxene trachy andesite GCh-86 58°43′37″ 35°49′14″ Hornblende pyroxene trachy andesite GCh-27 58°43′16″ 35°50′00″ Andesite GCH-49 58°42′53″ 35°50′14″ Andesite
According to the field study and relative age determination, two samples as the oldest (GCh-119, 6 Kg in weight) and the youngest (GCh-171, 10 Kg in weight) volcanic rocks were selected for U-Pb geochronology (
Major element (in wt% by XRF) and trace element (in ppm by ICP-MS) compositions of samples from Gandab volcanic rocks (Entezari et al., 2016).Sample GCH-171 GCH-92 GCH-119 GCH-153 GCH-131 GCH-179 GCH-60 GCH-17 GCH-140 GCH-35 GCH-160 GCH-183 GCH-16 GCH-71 GCH-57 GCH-86 GCH-40 GCH-31 GCH-27 GCH-49 62.58 61.54 54.01 54.39 55.01 54.56 57.86 57.12 57.71 57.35 58.01 57.25 57.86 57.42 60.88 59.35 58.36 58.12 55.87 55.12 17.69 17.59 15.91 16.05 15.86 15.62 17.99 18.03 18.24 18.35 18.02 18.42 17.08 16.89 17.52 18.13 17.63 17.51 15.24 15.35 3.50 3.82 8.21 7.92 7.53 7.79 4.80 5.35 5.19 5.12 5.23 5.17 5.21 5.34 3.73 4.22 4.85 5.01 4.26 4.78 5.27 5.92 6.87 6.52 7.02 7.32 4.26 4.62 5.17 5.21 5.24 5.27 2.86 3.42 1.68 1.89 3.01 2.97 4.98 5.02 4.48 4.53 3.56 3.45 3.29 3.35 4.34 4.12 3.94 4.25 3.59 3.75 4.75 4.35 4.26 4.12 3.87 3.67 2.98 2.87 3.02 2.95 2.99 3.25 3.38 3.57 5.49 5.15 4.02 3.98 4.08 3.92 6.89 6.72 7.34 6.95 7.02 6.99 7.41 7.25 0.27 0.42 5.24 5.10 4.52 4.98 1.78 1.98 2.35 2.37 2.34 2.52 1.69 1.91 1.48 1.79 1.49 1.78 0.98 1.35 1.429 1.354 0.891 0.854 0.840 0.915 0.968 1.071 0.869 0.864 0.867 0.862 1.011 1.009 0.914 1.050 0.918 0.899 1.154 1.034 0.080 0.069 0.112 0.131 0.098 0.082 0.069 0.059 0.045 0.048 0.042 0.046 0.124 0.105 0.040 0.051 0.078 0.087 0.063 0.087 0.336 0.392 0.341 0.313 0.362 0.333 0.454 0.521 0.418 0.455 0.418 0.428 0.732 0.792 0.323 0.355 0.513 0.532 0.468 0.423 1.04 1.15 1.62 1.78 1.87 1.55 1.73 1.76 1.66 1.67 1.85 1.87 1.43 1.66 1.51 1.72 2.03 2.10 4.40 4.65 99.72 99.86 99.82 99.83 99.80 99.71 99.77 99.81 99.64 99.52 99.71 99.53 99.71 99.72 99.74 99.71 99.87 99.76 99.51 99.76 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.05 0.07 0.05 0.06 0.10 0.06 1.69 1.81 0.009 0.008 0.054 0.057 0.009 0.008 0.012 0.013 0.012 0.015 0.008 0.009 0.018 0.035 0.011 0.019 0.008 0.009 0.017 0.017 287 294 383 367 376 381 515 552 482 475 451 453 551 525 485 435 570 552 497 505 2 2 1 2 1 1 2 2 1 2 2 2 1 1 2 1 2 2 4 3 4.3 5.6 27.4 28.2 28.7 29.1 9.8 10.1 12.1 12.8 12.7 13.1 8.0 9.1 4.8 5.2 7.4 6.9 6.1 5.8 1.1 1.5 1.9 2.4 2.2 2.6 2.9 3.1 1.9 1.5 1.3 1.2 3.3 2.8 3.6 3.2 3.3 2.9 3.0 2.8 19.6 18.3 16.1 15.9 15.6 16.2 15.1 15.6 18.2 18.8 17.2 16.8 15.5 16.1 16.0 15.5 15.0 14.3 13.7 14.1 7.5 7.4 2.9 2.8 2.9 2.9 3.7 3.6 3.3 3.5 3.5 3.4 3.6 3.7 4.1 4.2 3.7 3.8 3.4 3.3 27.9 26.2 9.9 10.4 11.5 10.8 15.2 15.8 14.5 14.1 14.3 14.6 16.5 16.2 19.2 18.8 15.8 15.6 15.3 15.7 68.0 73.1 70.8 72.4 74.4 79.1 135.4 142.1 97.0 110.2 96.1 82.2 160.4 155.2 182.2 173.1 158.7 148.9 144.9 145.5 3 2 2 1 1 2 1 1 1 2 1 1 1 1 1 2 2 1 1 1 453.9 438.2 614.8 580.3 559.8 592.2 608.6 595.1 726.7 717.3 728.7 731.2 504.7 491.2 239.1 251.2 454.3 432.1 347.2 371.1 1.8 1.6 0.6 0.7 0.7 0.8 0.9 0.8 0.8 0.9 1.0 0.8 1.1 1.0 1.2 1.1 0.9 1.0 1.0 0.9 9.1 9.5 3.7 4.3 4.1 4.8 6.1 6.2 4.9 5.1 5.0 4.8 7.2 6.9 7.8 7.4 6.7 7.1 6.2 6.3 2.7 2.5 1.1 1.3 1.1 1.2 1.6 1.4 1.4 1.6 1.5 1.4 2.3 2.5 1.1 1.1 2.3 2.4 2.4 2.1 112 120 259 262 252 243 298 310 265 256 269 285 395 375 223 259 361 345 279 242 1.4 1.6 1.5 1.9 2.9 3.1 1.3 1.7 1.5 1.8 1.7 1.5 1.4 1.6 2.0 1.8 1.8 1.6 3.3 2.7 306.1 297.3 108.6 121.5 119.8 109.1 157.9 149.1 142.0 138.5 140.9 135.2 167.5 159.5 193.5 185.1 160.0 163.6 148.0 152.1 30.8 31.2 19.3 18.9 19.4 18.8 16.9 17.1 17.1 16.8 17.9 17.2 18.6 18.3 18.0 18.5 17.4 17.1 16.7 17.2 36.3 35.2 15.4 15.8 17.1 16.8 22.6 21.7 21.3 21.5 20.9 21.2 24.7 24.1 24.1 23.2 24.1 23.8 23.3 23.9 76.9 75.2 32.0 33.2 36.0 35.2 42.6 43.2 43.6 41.9 41.6 42.3 48.3 47.9 45.6 44.9 45.7 45.2 45.8 44.9 8.96 8.52 4.35 4.71 4.62 4.44 5.25 5.37 5.24 5.01 5.14 4.93 5.71 5.54 5.36 5.59 5.72 5.45 5.51 4.89 35.8 36.4 17.7 18.1 18.6 18.4 19.9 20.2 19.2 18.8 20.2 20.4 22.3 22.6 20.6 19.9 21.4 22.3 22.3 22.5 7.14 7.01 4.12 3.93 3.88 4.07 3.75 3.83 4.11 3.95 3.99 4.05 4.39 4.09 3.71 3.91 3.86 4.01 4.00 3.89 1.69 1.58 1.22 1.17 1.15 1.11 1.05 0.98 1.15 1.19 1.15 1.13 1.11 1.15 0.91 1.08 1.18 1.21 1.09 1.12 6.69 6.35 4.12 3.93 4.22 4.17 3.53 3.61 3.73 3.68 3.80 3.75 3.67 3.86 3.33 3.52 3.49 3.62 3.57 3.49 1.04 1.11 0.61 0.56 0.65 0.61 0.57 0.59 0.58 0.58 0.59 0.60 0.60 0.63 0.51 0.56 0.58 0.57 0.54 0.55 5.64 5.23 3.44 3.61 3.74 3.54 2.91 3.11 3.36 3.21 3.23 3.39 3.51 3.33 2.97 3.08 3.32 3.45 3.01 2.96 1.10 1.05 0.74 0.72 0.75 0.73 0.60 0.62 0.73 0.68 0.69 0.72 0.65 0.63 0.65 0.69 0.63 0.66 0.61 0.67 3.20 3.11 1.81 1.87 1.99 1.92 1.78 1.81 1.90 1.94 1.92 1.95 1.88 1.83 1.90 1.94 2.06 1.98 1.79 1.85 0.44 0.41 0.30 0.29 0.30 0.30 0.27 0.28 0.27 0.28 0.29 0.29 0.29 0.29 0.29 0.28 0.28 0.27 0.30 0.30 2.91 2.76 1.95 1.91 1.92 1.89 1.70 1.72 1.84 1.86 1.73 1.87 1.87 1.92 1.91 1.88 1.84 1.87 1.71 1.73 0.46 0.48 0.31 0.30 0.31 0.31 0.27 0.28 0.29 0.27 0.28 0.29 0.32 0.30 0.31 0.30 0.31 0.31 0.28 0.29 3.07 2.757 2.68 2.42 2.80 2.25 2.49 2.54 2.96 2.76 2.86 3.04 2.29 2.35 2.46 2.54 2.36 2.2 2.47 2.49 0.63 0.67 0.62 0.63 0.67 0.64 0.85 0.93 0.66 0.66 0.62 0.62 1.09 1.06 2.02 1.73 1.25 1.27 1.43 1.36 3.13 3.44 1.90 2.25 2.14 2.54 3.59 3.6 2.66 2.74 2.89 2.57 3.85 3.59 4.08 3.94 3.64 3.8 3.63 3.64 1.30 1.34 1.56 1.52 1.49 1.56 1.49 1.37 1.47 1.52 1.46 1.45 1.50 1.49 1.25 1.23 1.53 1.53 1.52 1.52 3.20 3.16 2.35 2.53 2.77 2.60 3.79 3.56 3.26 3.42 3.29 3.29 3.54 3.71 4.09 3.73 3.93 3.73 3.66 3.86 0.75 0.72 0.91 0.91 0.87 0.82 0.88 0.81 0.90 0.95 0.90 0.89 0.85 0.88 0.79 0.89 0.98 0.97 0.88 0.93 1.85 1.86 1.70 1.66 1.77 1.78 1.68 1.69 1.64 1.60 1.77 1.62 1.58 1.62 1.41 1.51 1.53 1.56 1.64 1.63
Zircon U–Pb isotopic data for the Gandab volcanic rocks.Sample No. U238 (ppm) Th232/U238 207Pb/206Pb 238U/206pb 206Pb/238U Age (Ma) ± (Ma) GCh-119-1 343 0.730 0.0424 1234.01 0.0008 5.2 0.1 GCh-119-2 363 0.889 0.0514 1185.23 0.0008 5.4 0.2 GCh-119-3 347 0.579 0.0622 1197.66 0.0008 5.3 0.2 GCh-119-4 348 0.621 0.1039 1247.21 0.0008 4.9 0.1 GCh-119-5 389 1.113 0.0750 1173.23 0.0008 5.3 0.2 GCh-119-6 401 1.314 0.0922 1125.15 0.0009 5.5 0.1 GCh-119-7 456 0.967 0.0561 1192.12 0.0008 5.3 0.1 GCh-119-8 372 0.871 0.0748 1134.21 0.0009 5.5 0.2 GCh-119-9 339 0.690 0.0621 1179.10 0.0008 5.3 0.2 GCh-119-10 375 0.821 0.0940 1211.12 0.0008 5.1 0.1 GCh-119-11 332 1.101 0.1175 1045.23 0.0009 5.8 0.2 GCh-119-12 431 0.821 0.0920 1119.12 0.0009 5.6 0.2 GCh-119-13 369 1.451 0.0831 1131.57 0.0009 5.5 0.2 GCh-119-14 367 0.781 0.1751 980.56 0.0010 6.1 0.1 GCh-119-15 383 0.983 0.1669 960.13 0.0010 6.3 0.2 GChH-171-1 973 0.865 0.0798 2886.14 0.0003 2.1 0.1 GCh-171-2 613 0.550 0.0533 2819.62 0.0004 2.3 0.1 GCh-171-3 797 0.943 0.0904 2690.01 0.0004 2.4 0.1 GCh-171-4 765 0.595 0.0983 2911.14 0.0003 2.1 0.1 GCh-171-5 821 1.123 0.1289 2248.87 0.0004 2.7 0.1 GCh-171-6 678 0.871 0.1634 2321.22 0.0004 2.5 0.1 GCh-171-7 587 0.781 0.0879 2430.76 0.0004 2.5 0.1 GCh-171-8 801 1.121 0.0973 2869.36 0.0003 2.1 0.1 GCh-171-9 745 0.891 0.0611 2856.00 0.0004 2.2 0.1 GCh-171-10 956 1.153 0.1298 2678.87 0.0004 2.4 0.1 GCh-171-11 1005 1.151 0.0518 2488.76 0.0004 2.7 0.1 GCh-171-12 567 0.701 0.0741 2780.20 0.0003 2.3 0.1 GCh-171-13 710 1.151 0.0588 2130.45 0.0005 3.1 0.2 GCh-171-14 834 0.871 0.0741 2414.67 0.0004 2.7 0.1
Based on the petrographic and elemental geochemical information, four samples of the volcanic rocks of Gandab area were selected and sent to the Laboratory of Isotope Geology of the Aveiro University (Portugal) for Sr and Nd isotopic analysis (
Rb–Sr and Sm–Nd isotopic data of the Gandab volcanic rocks (Entezari et al., 2016). 2σ shows the precision of measurement and calculations (standard error).Sample Latitude (N) Longitude (E) Rb (ppm) Sr (ppm) 87Rb/86Sr 87Sr/86Sr Uncertainty (2σa) Sm (ppm) Nd (ppm) 147Sm/144Nd 143Nd/144Nd Uncertainty (2σ) εNd GCh-16 35°49′49″ 58°43′14″ 106 505 0.609 0.705047 0.000020 4.39 22.3 0.119 0.512833 0.000017 +3.8 GCh-57 35°50′18″ 58°42′44″ 182 239 2.205 0.705931 0.000020 3.71 20.6 0.109 0.512807 0.000015 +3.3 GCh-171 35°48′59″ 58°44′25″ 68.0 454 0.433 0.704082 0.000021 7.14 35.8 0.121 0.512893 0.000015 +5.0 GCh-119 35°47′37″ 58°43′39″ 70.8 615 0.333 0.704614 0.000016 4.12 17.7 0.141 0.512843 0.000017 +4.0
Andesitic rocks are dominant in the study area and middle Eocene coarse bedded limestone rocks folded and trusted above these volcanic rocks (
Geological map of the Gandab area (Entezari et al., 2016).
Outcrops of these volcanic rocks are observed in the south, north, and northeast (
Microscopic images of thin sections of volcanic rocks in the studied area (Entezari et al., 2016): (a) Plagioclase and pyroxene phenocrysts in microlitic groundmass in the Hornblende pyroxene olivine basaltic andesite, XPL; (b) Plagioclase and olivine phenocrysts in medium grained groundmass and converting olivine to chlorite and iddingsite in the Olivine hornblende basaltic andesite; (c) K-feldspar, hornblendel, magnetite phenocrysts, and glomeroporphyritic texture in the Pyroxene hornbelend trachy andesite; (d) Poikilitic texture in the Hornbelend pyroxene trachy andesite; (e) Plagioclase and opacity hornblende phenocrysts in the Hornblende andesite; (f) Phenocryst of plagioclase in a matrix of fine grain to intersertal and amygdals of carbonate in the Andesite; (g) Plagioclase and hornblende phenocrysts and alteration of hornblende to carbonate in the Hornblende trachy andesite; (h) K-feldspar phenocryst and trachytic texture in the Trachy andesite; (i) Plagioclase, clinopyroxene, and magnetite phenocrysts in the Pyroxene andesite.
According to the field mapping (
Pyroxene hornblende trachy andesite is mainly observed in the center of the area (
Hornblende pyroxene trachy andesites are seen in the center, northeast, and east of the Gandab area (
Field observations show that hornblende andesites are located in the east and north of the area (
Andesits are found at the north and center of the area (
Hornblende trachy andesite is the most plentiful rock in this area. It is seen in the west, east, center, northeast, and southeast (
Trachy andesites are seen in the central and southeast parts of the area (
The Pyroxene andesite is the youngest andesite volcanic rocks placed in the west Gandab area (
The results of the major and trace elements for 20 samples of free to weakly altered volcanic rocks are shown in
(a) Na2O + K2O vs. SiO2 diagram (Middlemost, 1994); (b) diagram for discriminate between subalkaline and alkaline fields (Irvine and Baragar,1971).
All of the Gandab volcanic rocks exhibit metaluminous on the diagram of Shand (1943) (
A/NK (molar) vs. A/CNK diagram of Shand (1943). The symbols are the same as in Fig. 4.
Selected major and trace elements vs. SiO2 contents for the Gandab volcanic rocks.
(a) primitive-mantle normalized diagrams (McDonough and Sun, 1995); (b) REE chondrite normalized diagrams (Boynton, 1984). The symbols are the same as in Fig. 6.
The outcomes of U-Pb zircon analysis on the two oldest and youngest samples based on the relative age are presented in
Cathodoluminescence images of analysed zircon grains from GCh-119 and GCh-171 samples, for the investigated volcanic rocks from the Gandab area, Iran. The red circles show the analyzed spots.
Concordia diagrams of 207Pb/207Pb vs. 238U/206Pb for calculating the age of zircons from Gandab volcanic rocks (Age is reported in Ma, GCh-119 = 5.47± 0.22, GCh-171 = 2.44± 0.79).
Sr and Nd isotopic data obtained in four selected samples are presented in Table 4. These samples have 143Nd/144Nd and 87Sr/86Sr ratios ranging from 0.512807 to 0.512893 and from 0.704082 to 0.705931, respectively. If the Nd isotopic ratio composition is expressed using εNd notation, the range goes from +3.3 to +5.0. Sr and Nd isotopic ratios and εNd values show insignificant differences between present-day values and calculated initial values for young geological ages, like those obtained in this work (less than 6 Ma), since both 87Rb and 147Sm have very low decay constants (Steiger and Jager, 1977; Villa
Application of TiO2
(a) TiO2 us. Al2O3 diagram, (Muller et al., 1992); (b) Nb*50-Zr*/3-Ce/P2O5 ternary diagram (Muller et al., 1992).
Researchers (e.g. Fang and Niu, 2003) have used Nb/Th ratio to survey the impact of subduction zone processes on the formation of volcanic rocks. This ratio is lower than ‘4’ in the rocks related to the subduction zone (Sun and Mcdonough, 1989). Nb/Th ratio of the proposed samples varies from 2.19 to 3.06. As a result, Nb/Th ratio in the proposed samples is less than ‘4’ and it verifies that the studied rocks were affected by the processes related to the subduction zone. As it was mentioned earlier, the study area is located at Sabzevar zone (NE Iran). During the Late Cretaceous, the Sabzevar oceanic basin (branch of the Neo-Tethys Ocean between central Iranian microcontinent and Eurasian margin) was formed, which was later closed during Palaeocene-Eocene (Rossetti
Calculated ages based on U-Pb zircon and geochemical characteristics indicate that all volcanic rocks of the Gandab area probably have a similar petrogenesis and magma source. Changing major and trace elements normally display linear trends
Diagrams showing fractional crystallization (FC) for Gandab volcanic rocks. (a) Th vs. SiO2 (Whalen et al, 1987); (b) Eu/Eu* vs. SiO2 (Irber, 1999); (c) Ba/Sr vs. SiO2 (Lopez-Moro et al., 2012); (d) Th/Yb vs. SiO2 (Taylor and McLennan, 1985); (e) La/Nb vs. SiO2 (Taylor and McLennan, 1985).
Negative and positive εNd (t) isotopic ratios demonstrate the features of the crustal melt, and mantle array, respectively (Kemp
Plot of initial (87Sr/86Sr)i vs. εNd ratios (Entezari et al., 2016).
The Gandab samples are mainly characterized with high concentrations of incompatible trace elements (e.g., LILE and LREE). Moreover,
LA–ICP–MS U-Pb zircon age data indicate that the volcanic rocks have been formed between 5.47 ± 0.22 Ma and 2.44 ± 0.79 Ma. Major oxides geochemistry reveal that all the studied rocks are typically metaluminous. In primitive mantle and chondrite-normalized trace element spider diagrams, the analyzed samples demonstrate slight to moderate enrichment in LILE (2.35 ≤La N /SmN≤ 4.09) compared to HFSE (1.41≤ GdN /YbN≤ 1.86) while being accompanied by negative anomalies of Nb and Ti. These geochemical properties and isotope geochemistry (Sri and εNdi) illustrate that the studied rocks are derived from enriched lithospheric mantle source as well as they are co-genetic which fractional crystallization process has produced different magmas in their composition. The analyzed samples also show a post-collisional arc environment. We propose that volcanic activity in Gandab area during Pliocene period has been created by the enriched lithospheric mantle source which is metasomatized by previously subducted sediments after Neo-Tethys subduction.