Otwarty dostęp

Acquisition and Expansion of Adult Rat Bone Marrow Multipotent Mesenchymal Stromal Cells


Zacytuj

1. Animal Protection Act of Slovakia No. 15/1995, part 39 (In Slovak), 1250—1255.Search in Google Scholar

2. Caplan, A. I., Dennis, J. E., 2006: Mesenchymal stem cells as trophic mediators. J. Cell. Biochem., 98, 1076—1084.10.1002/jcb.2088616619257Search in Google Scholar

3. Chesier, S. H., Kalani, M. Y. S., Lim, M., Ailles, L., Huhn, S. L., Weissman, I. L., 2009: A neurosurgeon’s guide to stem cells, cancer stem cells, and brain tumor stem cells. Neurosurgery, 65, 237—250.10.1227/01.NEU.0000349921.14519.2A19625901Search in Google Scholar

4. Čížková, D., Rosocha, J., Vanický, I., Jergová, S., Čížek, M., 2006: Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell. Mol. Neurobiol., 26, 1167—1180.10.1007/s10571-006-9093-116897366Search in Google Scholar

5. Danišovič, Ľ., Boháč, M., Zamborský, R., Oravcová, L., Provazníková, Z., Csölönyiová, M., Varga, I., 2016: Comparative analysis of mesenchymal stromal cells from different tissue sources in respect to articular cartilage tissue engineering. Gen. Physiol. Biophysics, 35, 207—214.10.4149/gpb_201504426891275Search in Google Scholar

6. Dezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S. et al., 2005: Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 309, 314—317.10.1126/science.111036416002622Search in Google Scholar

7. Dominici, M., Blane, K. L., Mueller, L., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S. et al., 2006: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315—317.10.1080/1465324060085590516923606Search in Google Scholar

8. Greyson, W. L., Zhano, F., Brunnell, B., Ma, T., 2007: Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem. Biophys. Res. Commun., 358, 948—953.10.1016/j.bbrc.2007.05.05417521616Search in Google Scholar

9. Kalanin, P., Flešárová, S., 2006: Neuron damage elicited by cardiac arrest in a dog brain. Folia Veterinaria, 50, 73—75.Search in Google Scholar

10. Kim, B. G., Hwang, D. H., Lee, S. I., Kim, E. J., Kim, S. N., 2007: Stem cell-based cell therapy for spinal cord injury. Cell Transplant., 16, 355—364.10.3727/00000000778346488517658126Search in Google Scholar

11. Maženský, D., Flešárová, S., 2016: Importance of the arterial blood supply to the rabbit and guinea pig spinal cord in experimental ischemia. In Schaller, B. (Ed.):Ischemic Stroke — Updates. Tech., Croatia, 59—86.10.5772/64352Search in Google Scholar

12. Michalczyk, K., Ziman, M., 2005: Nestin structure and predicted function in cellular cytoskeletal organisation. Histol. Histopathol., 20, 665—671.Search in Google Scholar

13. Phinney, D. G., Prockop, D. J., 2007: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair — current views. Stem Cells, 11, 2896—2902.10.1634/stemcells.2007-063717901396Search in Google Scholar

14. Pittinger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. H., Douglas, R., Mosca, J. D. et al., 1999: Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143—147.10.1126/science.284.5411.14310102814Search in Google Scholar

15. Rider, D. A., Dombrowski, C., Sawyer, A. A., Ng, G. H. B., Leong, D., Hutmacher, D. W. et al., 2008: Autocrine fibroblast growth factor 2 increases the multipotentiality of human adipose-derived mesenchymal stem cells. Stem Cells, 26, 1598—1608.10.1634/stemcells.2007-048018356575Search in Google Scholar

16. Shroff, G., Agarwal, P., Mishra, A., Sonowal, N., 2015: Human embryonic stem cells in treatment of spinal cord injury: A prospective study. J. Neurol. Res., 5, 213—220.10.14740/jnr339wSearch in Google Scholar

17. Slovinská, L., Székiová, E., Blaško, J., Devaux, S., Salzet, M., Čížková, D., 2015: Comparison of dynamic behaviour and maturation of neural multipotent cells derived from different spinal cord developmental stages: an in vitro study. Acta Neurobiol. Exp. (Wars.), 75, 107—114.Search in Google Scholar

18. Soleimani, M., Nadri, S. A., 2009: A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature Protocols, 4, 102—106.10.1038/nprot.2008.22119131962Search in Google Scholar

19. Šulla, I., Bačiak, L., Juránek, I., Cicholesová, T., Boldižár, M., Balik, V., Lukáčová, N., 2014: Assessment of motor recovery and MRI correlates in a porcine spinal cord injury model. Acta Vet. Brno, 83, 393—397.10.2754/avb201483040393Search in Google Scholar

20. Šulla, I., Balik, V., Petrovičová, J., Almášiová, V., Holovská, K., Oroszová, Z., 2016: A rat spinal cord injury model. Folia Veterinaria, 60, 41—46.10.1515/fv-2016-0017Search in Google Scholar

21. Tropel, P., Platet, N., Platel, J. C., Noël, D., Albrieux, M., Benabid, A. L., Berger, F., 2006: Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells, 24, 2868—2876.10.1634/stemcells.2005-063616902198Search in Google Scholar

22. Žilka, N., Žilková, M., Kaznerová, Z., Šarišský, M., Cigánková, V., Novák, M., 2011: Mesenchymal stem cells rescue the Alzheimer’s disease cell model from cell death induced by misfolded tau. Neuroscience, 193, 330—337.10.1016/j.neuroscience.2011.06.08821763758Search in Google Scholar

eISSN:
2453-7837
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine