Otwarty dostęp

Leaf area index mapping with optical methods and allometric models in SMEAR flux tower footprint at Järvselja, Estonia


Zacytuj

Anderson, M.C. 1964. Studies of the woodland light climate. I. The photographic computation of light condition. – Journal of Ecology, 52, 27–41.Search in Google Scholar

Arumäe, T., Lang, M. 2013. A simple model to estimate forest canopy base height from airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 58, 46–56.Search in Google Scholar

Béland, M., Baldocchi, D.D., Widlowski, J.L., Fournier, R., Verstraete, M.M. 2014. On seeing the wood from the leaves and the role of voxel size in determining leaf area distribution of forests with terrestrial LiDAR. – Agricultural and Forest Meteorology, 184, 82–97.Search in Google Scholar

Bréda, N.J.J. 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. – Journal of Experimental Botany, 54(392), 2403–2417.Search in Google Scholar

Cescatti, A. 2007. Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs Methodology and comparison with standard thresholding techniques. – Agricultural and Forest Meteorology, 143, 1–12.Search in Google Scholar

Chen, J.M., Rich, P.M., Gower, T.S., Norman, J.M., Plummer, S. 1997. Leaf area index of boreal forests: Theory, techniques and measurements. – Journal of Geophysical Research, 102, 29429–29444.Search in Google Scholar

Danson, F.M., Morsdorf, F., Koetz, B. 2009. Airborne and terrestrial laser scanning for measuring vegetation canopy structure. – Heritage, G.L., Large, A.R.G. (eds.). Laser scanning for the environmental sciences. Oxford, Wiley-Blackwell, 201–219.Search in Google Scholar

Frazer, G.W., Canham, C.D., Lertzman, K.P. 1999. Gap Light Analyzer (GLA), Version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York.Search in Google Scholar

Gower, S.T., Kucharik, C.J., Norman, J.M. 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. – Remote Sensing of Environment, 70, 29–51.Search in Google Scholar

Isenburg, M. 2007. LasTools – efficient tools for LiDAR processing. Version 150202. [WWW document]. – URL http://lastools.org [Accessed 14 April 2015].Search in Google Scholar

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F. 2004. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography. – Agricultural and Forest Meteorology, 121, 19–35.Search in Google Scholar

Jones H.G. 1992. Plants and microclimate. A quantitative approach to environmental plant physiology. Cambridge, Cambridge University Press. 413 pp.Search in Google Scholar

Kangur, A., Korjus, H., Jõgiste, K., Kiviste, A. 2005. A conceptual model of forest stand development based on permanent sample-plot data in Estonia. – Scandinavian Journal of Forest Research, 20(6), 94–101.Search in Google Scholar

Kärkkäinen, L. 2005. Evaluation of performance of tree-level biomass models for forestry modelling and analyses. Finnish Forest Research Institute, Research papers, 940. 123 pp.Search in Google Scholar

Kiviste, A., Hordo, M. 2002. Network of permanent forest growth plots in Estonia. Forestry Studies / Metsanduslikud Uurimused, 37, 43–58.Search in Google Scholar

Kiviste, A., Hordo, M., Kangur, A., Kardakov, A., Laarmann, D., Lilleleht, A., Metslaid, S., Sims, A., Korjus, H. 2015. Monitoring and modeling of forest ecosystems: the Estonian Network of Forest Research Plots. – Forestry Studies / Metsanduslikud Uurimused, 62, 26–38.Search in Google Scholar

Kodar, A., Lang, M., Arumäe, T., Eenmäe, A., Pisek, J., Nilson, T. 2011. Leaf area index mapping with airborne lidar, satellite images and ground measurements in Järvselja VALERI test site. – Forestry Studies / Metsanduslikud Uurimused, 55, 11–32.Search in Google Scholar

Korf, V. 1939. A mathematical definition of forest stands volume growth law. [Příspěvek k matematické definici vzrůstového zákona hmot lesních porostů.]. Lesnická práce, 18, 339–379. (In Czeckian).Search in Google Scholar

Korhonen, L., Korpela, I., Heiskanen, J., Maltamo, M. 2011. Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. – Remote Sensing of Environment, 115, 1065–1080.Search in Google Scholar

Kuusk, A., Lang, M., Kodar, A., Sims, A. 2015. Estimation of leaf area index of hemiboreal forests. – The Open Remote Sensing Journal, 6, 1–10.Search in Google Scholar

Lang, M. 2010. Estimation of crown and canopy cover from airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 52, 5–17.Search in Google Scholar

Lang, M., Arumäe, T., Anniste, J. 2012. Estimation of main forest inventory variables from spectral and airborne lidar data in Aegviidu test site, Estonia. – Forestry Studies / Metsanduslikud Uurimused, 56, 27–41.Search in Google Scholar

Lang, M., Kodar, A., Arumäe, T. 2013. Restoration of above canopy reference hemispherical image from below canopy measurements for plant area index estimation in forests. Forestry Studies / Metsanduslikud Uurimused, 59, 13–27.Search in Google Scholar

Lang, M., Kuusk, A., Mõttus, M., Rautiainen, M., Nilson, T. 2010. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. – Agricultural and Forest Meteorology, 150, 20–29.Search in Google Scholar

Lang, M., Nilson, T., Kuusk, A., Kiviste, A., Hordo, M. 2007. The performance of foliage mass and crown radius models in forming the input of a forest reflectance model: A test on forest growth sample plots and Landsat 7 ETM+ images. – Remote Sensing of Environment, 110, 445–457.10.1016/j.rse.2006.11.030Search in Google Scholar

Leclerc, M.Y., Thurtell, G.W. 1990. Footprint predictions of scalar fluxes using a Markovian analysis. – Boundary-Layer Meteorology, 52, 247–258.Search in Google Scholar

Lefsky, M.A., Cohen, W.B., Acker, S.A., Parker, G.G., Spies, T.A., Harding, D. 1999. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. – Remote Sensing of Environment, 70, 339–361.Search in Google Scholar

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J. 2002. Lidar remote sensing for ecosystem studies. – Bioscience, 52, 19–30.Search in Google Scholar

Liang, S. 2004. Quantitative remote sensing of land surfaces. Hoboken, New Jersey, John Wiley & Sons, Inc.10.1002/047172372XSearch in Google Scholar

Macfarlane, C. 2011. Classification method of mixed pixels does not affect canopy metrics from digital images of forest overstorey. – Agricultural and Forest Meteorology, 151, 833–840.Search in Google Scholar

Majasalmi, T., Rautiainen, M., Stenberg, P., Lukeš, P. 2013. An assessment of ground reference methods for estimating LAI of boreal forests. – Forest Ecology and Management, 292, 10–18.Search in Google Scholar

Marklund, L.G. 1988. Biomass functions for pine, spruce and birch in Sweden. Swedish University of Agricultural Sciences. Department of Forest Survey. Report 45, 71 pp.Search in Google Scholar

McGaughey, R.J. 2012. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. October 2013 – FUSION Version 3.40. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station.Search in Google Scholar

Miller, J.B. 1967. A formula for average foliage density. – Australian Journal of Botany, 15, 141–144.Search in Google Scholar

Morsdorf, F., Kötz, B., Meier, E., Itten, K.I., Allgöwer, B. 2006. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. – Remote Sensing of Environment, 104, 50–61.Search in Google Scholar

Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G., Nemani, R.R. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. – Letters to Nature; Nature, 386, 698–702.Search in Google Scholar

Nikinmaa, E., Bäck, J. 2008. Individual. – Boreal forest and climate change. Hari, P., Kulmala, L. (eds.). Springer Science + Business Media B.V. 117–118.Search in Google Scholar

Nilson, T. 1999. Inversion of gap frequency data in forest stands. – Agricultural and Forest Meteorology, 98–99, 437–448.Search in Google Scholar

Noe, S.M. 2013. Simple footprint model for SMEAR Estonia. Department of Plant Physiology. Estonian University of Life Sciences. 6p. Version 27.04.2013, unpublished.Search in Google Scholar

Noe, S.M., Kimmel, V., Hüve, K., Copolovici, L., Portillo-Estrada, M., Püttsepp, Ü., Jõgiste, K., Niinemets, Ü., Hörtnagl, L., Wohlfahrt, G. 2011. Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Järvselja, Estonia. – Forest Ecology and Management, 262, 71–81.Search in Google Scholar

Peduzzi, A., Wynne, R.H., Fox, T.R., Nelson, R.F., Thomas, V.A. 2012. Estimating leaf area index in intensively managed pine plantations using airborne laser scanner data. – Forest Ecology and Management, 270, 54–65.Search in Google Scholar

Pope, G., Treitz, P. 2013. Leaf area index (LAI) estimation in boreal mixedwood forest of Ontario, Canada using light detection and ranging (LiDAR) and WorldView-2 imagery. – Remote Sensing, 5, 5040–5063.10.3390/rs5105040Search in Google Scholar

R Development Core Team. 2014. R: a language and environment for statistical computing. Vienna, Austria.Search in Google Scholar

Rautiainen, M., Nilson, T., and Lükk, T. 2009. Seasonal reflectance trends of hemiboreal birch forests. – Remote Sensing of Environment, 113, 805-815.Search in Google Scholar

Repola, J. 2008. Biomass equations for birch in Finland. – Silva Fennica, 42, 605–624.Search in Google Scholar

Repola, J. 2009. Biomass equations for Scots pine and Norway spruce in Finland. – Silva Fennica, 43, 625–647.Search in Google Scholar

Rich, P.M. 1990. Characterizing plant canopies with hemispherical photographs. – Remote Sensing Reviews, 5, 13–29.Search in Google Scholar

Richardson, J.J., Moskal, L.M., Kim, S.H. 2009. Modeling approaches to estimate effective leaf area index from aerial discrete-return LIDAR. – Agricultural and Forest Meteorology, 149, 1152–1160.Search in Google Scholar

Ross J. 1981. The radiation regime and architecture of plant stands. The Hague, Dr W. Junk Publishers. 420 pp.10.1007/978-94-009-8647-3Search in Google Scholar

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. – Third ERTS Symposium, NASA SP-351 I, 309–317.Search in Google Scholar

SMEAR Estonia. 2015. [WWW document]. URL – http://smear.emu.ee/ [Accessed 12 June 2015].Search in Google Scholar

Solberg, S., Brunner, A., Hanssen, K.H., Lange, H., Næsset, E., Rautiainen, M., Stenberg, P. 2009. Mapping LAI in a Norway spruce forest using airborne laser scanning. – Remote Sensing of Environment, 113, 2317–2327.Search in Google Scholar

Stenberg, P. 1996. Correcting LAI-2000 estimates for the clumping of needles in shoots of conifers. – Agricultural and Forest Meteorology, 79, 1–8.Search in Google Scholar

Stenberg, P., Rautiainen, M., Manninen, T., Voipo, P., Smolander, H. 2004. Reduced Simple Ratio better than NDVI for estimating LAI in Finnish pine and spruce stands. – Silva Fennica, 38, 3–14.Search in Google Scholar

Straatsma, M.W., Middelkoop, H. 2006. Airborne laser scanning as a tool for lowland floodplain vegetation monitoring. – Hydrobiologia, 565, 87–103.Search in Google Scholar

Valentine, H.T., Mäkelä, A. 2005. Bridging process-based and empirical approaches to modeling tree growth. – Tree Physiology, 25, 769–779.Search in Google Scholar

Validation of Land European Remote sensing Instruments. 2015. [WWW document]. URL – http://w3.avignon.inra.fr/valeri/ [Accessed 12 June 2015].Search in Google Scholar

Wagner, S. 1998. Calibration of grey values of hemispherical photographs for image analysis. Agricultural and Forest Meteorology, 90, 103–117.Search in Google Scholar

Watson, D.J. 1947. Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. – Annals of Botany, 11, 41–76.10.1093/oxfordjournals.aob.a083148Search in Google Scholar

Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs, 4, p. 63.Search in Google Scholar

eISSN:
1736-8723
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, Plant Science, Ecology, other