1. bookTom 24 (2016): Zeszyt 2 (June 2016)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1898-9934
ISSN
1426-2630
Pierwsze wydanie
09 Jun 2008
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Tarski Geometry Axioms – Part II

Data publikacji: 08 Dec 2016
Tom & Zeszyt: Tom 24 (2016) - Zeszyt 2 (June 2016)
Zakres stron: 157 - 166
Otrzymano: 30 Jun 2016
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1898-9934
ISSN
1426-2630
Pierwsze wydanie
09 Jun 2008
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

[1] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99–107, 2005.Search in Google Scholar

[2] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Search in Google Scholar

[3] Roland Coghetto. Circumcenter, circumcircle and centroid of a triangle. Formalized Mathematics, 24(1):17–26, 2016. doi:10.1515/forma-2016-0002.10.1515/forma-2016-0002Search in Google Scholar

[4] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.Search in Google Scholar

[5] Adam Grabowski. Efficient rough set theory merging. Fundamenta Informaticae, 135(4): 371–385, 2014. doi:10.3233/FI-2014-1129.10.3233/FI-2014-1129Search in Google Scholar

[6] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11–14, 2016, pages 373–381, 2016. doi:10.15439/2016F290.10.15439/2016F290Search in Google Scholar

[7] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.10.1007/s10817-015-9333-5Search in Google Scholar

[8] Adam Grabowski and Christoph Schwarzweller. On duplication in mathematical repositories. In Serge Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors, Intelligent Computer Mathematics, 10th International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th International Conference, MKM 2010, Paris, France, July 5–10, 2010. Proceedings, volume 6167 of Lecture Notes in Computer Science, pages 300–314. Springer, 2010. doi:10.1007/978-3-642-14128-7_26.10.1007/978-3-642-14128-7_26Search in Google Scholar

[9] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.10.1007/s10817-015-9345-1Search in Google Scholar

[10] Timothy James McKenzie Makarios. A mechanical verification of the independence of Tarski’s Euclidean Axiom. 2012. Master’s thesis.Search in Google Scholar

[11] Julien Narboux. Mechanical theorem proving in Tarski’s geometry. In F. Botana and T. Recio, editors, Automated Deduction in Geometry, volume 4869 of Lecture Notes in Computer Science, pages 139–156. Springer, 2007.10.1007/978-3-540-77356-6_9Search in Google Scholar

[12] William Richter, Adam Grabowski, and Jesse Alama. Tarski geometry axioms. Formalized Mathematics, 22(2):167–176, 2014. doi:10.2478/forma-2014-0017.10.2478/forma-2014-0017Search in Google Scholar

[13] Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.10.1007/978-3-642-69418-9Search in Google Scholar

[14] Alfred Tarski and Steven Givant. Tarski’s system of geometry. Bulletin of Symbolic Logic, 5(2):175–214, 1999.10.2307/421089Search in Google Scholar

[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445–449, 1990.Search in Google Scholar

[16] Wojciech A. Trybulec. Axioms of incidence. Formalized Mathematics, 1(1):205–213, 1990.Search in Google Scholar

[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo