Zacytuj

1. Andryskowski G., Owczarek T.: Ocena wybranych parametrow stresu oksydacyjnego u chorych z nadczynnością tarczycy Pol. Arch. Med. Wewn., 117, 285, 2007.Search in Google Scholar

2. Berthiaume JM, Wallace KB.: Persistent alterations to the gene expression profile of the heart subsequent to chronic doxorubicin treatment. Cardiovascular Toxicol., 7, 178, 2007.Search in Google Scholar

3. Carvalho R.A., at al.: Metabolic remodeling associated with subchronic doxorubicin cardiomyopathy. Toxicology., 270, 92, 2010.Search in Google Scholar

4. Dudka J, et al.: Activity of NADPH-cytochrome P-450 reductase of the human heart, liver and lungs in the presence of (-)-epigallocatechin gallate, quercetin and resveratrol: an in vitro study. Basic Clin. Pharmacol. Toxicol., 97, 74, 2005.Search in Google Scholar

5. Ferreira ALA, Matsubara LS, Matsubara BB.: Anthracycline-induced cardiotoxicity. Cardiov. Hematol. Agents Med. Chem., 6, 278, 2008.Search in Google Scholar

6. Flores-Morales A., et al.: Patterns of liver gene expression governed by TRβ Mol Endocrinol., 16, 1257, 2002.Search in Google Scholar

7. Garner A.P., et al.: Nitric oxide synthases catalyze the activation of redox cycling and bioreductive anticancer agents. Cancer Res., 59, 1929, 1999.Search in Google Scholar

8. Halliwell B., Gutterridge J.M.C.: Free Radicals in Biology and Medicine. University Press, New York, 1999.Search in Google Scholar

9. Hong Y.M., Kim H.S., Yoon H.: Serum lipid and fatty acid profiles in adriamycin-treated rats after administration of L-carnitine. Pediatr. Res., 51, 249, 2002.Search in Google Scholar

10. Kerner J., et al.: Encyclopedia of biological chemistry., 2: 505-507, 2004.Search in Google Scholar

11. Keyes G., Heimberg M.: Inf luence of thyroid status on lipid metabolism in the perfused rat liver. J. Clin. Invest., 64, 182, 1979.Search in Google Scholar

12. Lebrecht D., et al.: Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation., 108, 2423, 2003.Search in Google Scholar

13. Lombardi A, et al.: 3,5-Diiodo-L-thyronine regulates glucose-6- phosphate dehydrogenase activity in the rat. Endocrinology., 141, 1729, 2000.Search in Google Scholar

14. Martini G., Ursini M. V.: A new lease of life for an old enzyme. Bioessays, 18, 631, 1996.Search in Google Scholar

15. Merten K.E.: Modulation of cytochrome C oxidase is possibly involved in metallothionein protection from Doxorubicin cardiotoxicity. J. Pharmacol. Exp. Ther., 315, 1314, 2005.10.1124/jpet.105.08976316144979Search in Google Scholar

16. Minotti G., et al.: Doxorubicin cardiotoxicity and the control of iron metabolism: quinone-dependent and independent mechanisms. Methods Enzymol., 378, 340, 2004.Search in Google Scholar

17. Nohl H, Gille L, Staniek K.: The exogenous NADH dehydrogenase of heart mitochondria is the key enzyme responsible for selective cardiotoxicity of anthracyclines. Z Naturforsch., 53, 279, 1998.Search in Google Scholar

18. Ogasavara Y., Funakoshi M., Ishii K.: Determination of reduced nicotinamide adenine dinucleotide phosphate concentration using high-performance liquid chromatography with fluorescence detection: ratio of the reduced form as a biomarker of oxidative stress. Biol. Pharm. Bull., 32, 1819, 2009.Search in Google Scholar

19. Singal PK, Iliskovic N, Li T, Kumar D.: Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J,. 11, 931, 1997.Search in Google Scholar

20. Thompson KL, et al.: Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol., 66, 303, 2010.Search in Google Scholar

21. Venditti P., et al.: Effect of thyroid state on lipid peroxidation, antioxidant defenses, and susceptibility to oxidative stress in rat tissues. J Endocrinol., 155, 151, 1997. Search in Google Scholar

eISSN:
2300-6676
ISSN:
2084-980X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy