1. bookTom 17 (2017): Zeszyt 2 (June 2017)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1314-4081
Pierwsze wydanie
13 Mar 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
access type Otwarty dostęp

Review on Big Data & Analytics – Concepts, Philosophy, Process and Applications

Data publikacji: 26 Jun 2017
Tom & Zeszyt: Tom 17 (2017) - Zeszyt 2 (June 2017)
Zakres stron: 3 - 27
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1314-4081
Pierwsze wydanie
13 Mar 2012
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Abstract

Big Data analytics has been the main focus in all the industries today. It is not overstating that if an enterprise is not using Big Data analytics, it will be a stray and incompetent in their businesses against their Big Data enabled competitors. Big Data analytics enables business to take proactive measure and create a competitive edge in their industry by highlighting the business insights from the past data and trends. The main aim of this review article is to quickly view the cutting-edge and state of art work being done in Big Data analytics area by different industries. Since there is an overwhelming interest from many of the academicians, researchers and practitioners, this review would quickly refresh and emphasize on how Big Data analytics can be adopted with available technologies, frameworks, methods and models to exploit the value of Big Data analytics.

Keywords

1. Demchenko, Y., C. D. Laat, P. Membrey. Defining Architecture Components of the Big Data Ecosystem. – In: Proc. of International Conference Collaboration Technologies and Systems (CTS’14), Vol. 14, 2014, pp. 104-112.10.1109/CTS.2014.6867550Search in Google Scholar

2. Slavakis, K., G. B. Giannakis, G. Mateos. Modeling and Optimization for Big Data Analytics: (Statistical) Learning Tools for Our Era of Data Deluge. – IEEE Signal Processing Magazine, Vol. 31, 2014, pp. 18-31.10.1109/MSP.2014.2327238Search in Google Scholar

3. Sherman, R. Chapter 1 – The Business Demand for Data, Information, and Analytics. – Business Intelligence Guidebook, Morgan Kaufmann, Boston, 2015, pp. 3-19.10.1016/B978-0-12-411461-6.00001-0Search in Google Scholar

4. Linstedt, D., M. Olschimke. Chapter 1 – Introduction to Data Warehousing – In Data Vault 2.0, Morgan Kaufmann, Boston, 2016, pp. 1-15.10.1016/B978-0-12-802510-9.00001-5Search in Google Scholar

5. Sharma, S. Expanded Cloud Plumes Hiding Big Data Ecosystem. – Future Generation Computer Systems, Vol. 59, 2016, pp. 63-92.10.1016/j.future.2016.01.003Search in Google Scholar

6. Cohen, J., B. Dolan, M. Dunlap, J. M. Hellerstein, C. Welton. MAD Skills: New Analysis Practices for Big Data. – Proc. VLDB Endow, Vol. 2, 2009, pp. 1481-1492.10.14778/1687553.1687576Search in Google Scholar

7. Hu, H., Y. Wen, T. S. Chua, X. Li. Toward Scalable Systems for Big Data Analytics: A Technology Tutorial. – IEEE Access, Vol. 2, 2014, pp. 652-687.10.1109/ACCESS.2014.2332453Search in Google Scholar

8. Myerson, J. M. Cloud Computing Versus Grid Computing. 3 March 2009. http://www.ibm.com/developerworks/library/wa-cloudgrid/Search in Google Scholar

9. Alkhanak, E. N., S. P. Lee, R. Rezaei, R. M. Parizi. Cost Optimization Approaches for Scientific Workflow Scheduling in Cloud and Grid Computing: A Review, Classifications, and Open Issues. – Journal of Systems and Software, Vol. 113, 2016, pp. 1-26.10.1016/j.jss.2015.11.023Search in Google Scholar

10. The Digital Universe of Opportunities: Rich Data Increasing Value of the Internet of Things. – EMC Digital Universe with Research & Analysis by IDC. http://www.emc.com/leadership/digital-universe/2014iview/executive-summary.htmSearch in Google Scholar

11. Kim, L. Here’s What Happens in 60 Seconds on the Internet. 11 December 2015. http://smallbiztrends.com/2015/12/60-seconds-on-the-internet.htmlSearch in Google Scholar

12. Kart, N. H. L., F. Buytendijk. Survey Analysis: Big Data Adoption in 2013 Shows Substance behind the Hype. – Gartner’s 2013 Big Data Study, 2013.Search in Google Scholar

13. Contributors, W. Big Data. 12 March 2016. UTC. https://en.wikipedia.org/w/index.php?title=Big_data&oldid=709642525Search in Google Scholar

14. Ishwarappa, J. Anuradha. A Brief Introduction on Big Data 5Vs Characteristics and Hadoop Technology. – Procedia Computer Science, Vol. 48, 2015, pp. 319-324.10.1016/j.procs.2015.04.188Search in Google Scholar

15. Watson, H. J. Tutorial: Big Data Analytics: Concepts, Technology, and Applications. – Association for Informaiton Systems, Vol. 34, 2014, pp. 5-16.10.17705/1CAIS.03465Search in Google Scholar

16. Swan, M. Philosophy of Big Data: Expanding the Human-Data Relation with Big Data Science Services. – In: Proc. of First International IEEE Conference of Big Data Computing Service and Applications (BigDataService’2015), 2015, pp. 468-477.Search in Google Scholar

17. Farid, M., A. Roatis, I. F. Ilyas, H.-F. Hoffmann, X. Chu. CLAMS: Bringing Quality to Data Lakes. – In: Proc. of 2016 International Conference on Management of Data, San Francisco, California, USA, 2016, pp. 2089-2092.Search in Google Scholar

18. Don Kogan. Top 8 Bigdata Trends 2016. – White Paper, 2016.Search in Google Scholar

19. Rith, J., P. S. Lehmayr, K. Meyer-Wegener. Speaking in Tongues: SQL Access to NoSQL Systems. – In: Proc. of 29th Annual ACM Symposium on Applied Computing, Gyeongju, Republic of Korea, 2014, pp. 855-857.Search in Google Scholar

20. Gaitho, M. How Applications of Big Data Drive Industries. – Simplylearn. http://www.simplilearn.com/big-data-applications-in-industries-articleSearch in Google Scholar

21. Sherman, R. Chapter 15. Advanced Analytics. – In: Business Intelligence Guidebook. Boston, Morgan Kaufmann, 2015, pp. 375-402.10.1016/B978-0-12-411461-6.00015-0Search in Google Scholar

22. Gandomi, A., M. Haider. Beyond the Hype: Big Data Concepts, Methods, and Analytics. – International Journal of Information Management, Vol. 35, 2015, pp. 137-144.10.1016/j.ijinfomgt.2014.10.007Search in Google Scholar

23. Manyika, M. C. J., B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A. H. Byers. Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute, June 2011.Search in Google Scholar

24. Vatrapu, R., R. R. Mukkamala, A. Hussain, B. Flesch. Social Set Analysis: A Set Theoretical Approach to Big Data Analytics. – IEEE Access, Vol. 4, 2016, pp. 2542-2571.10.1109/ACCESS.2016.2559584Search in Google Scholar

25. Ittoo, A., L. M. Nguyen, A. Van Den Bosch. Text Analytics in Industry: Challenges, Desiderata and Trends. – Computers in Industry, Vol. 78, 2016, pp. 96-107.10.1016/j.compind.2015.12.001Search in Google Scholar

26. Hermann, M., R. Klein. A Visual Analytics Perspective on Shape Analysis: State of the Art and Future Prospects. – Computers & Graphics, Vol. 53, Part A, 2015, pp. 63-71.10.1016/j.cag.2015.08.008Search in Google Scholar

27. González-Torres, A., F. J. García-Peñalvo, R. Therón-Sánchez, R. Colomo-Palacios. Knowledge Discovery in Software Teams by Means of Evolutionary Visual Software Analytics. – Science of Computer Programming, Vol. 121, 2016, pp. 55-74.10.1016/j.scico.2015.09.005Search in Google Scholar

28. Makonin, S., D. McVeigh, W. Stuerzlinger, K. Tran, F. Popowich. Mixed-Initiative for Big Data: The Intersection of Human + Visual Analytics + Prediction. – In: 2016 49th Hawaii International Conference on System Sciences (HICSS’16), 2016, pp. 1427-1436.Search in Google Scholar

29. Pääkkönen, P., D. Pakkala. Reference Architecture and Classification of Technologies, Products and Services for Big Data Systems. – Big DATA Research, Vol. 2, 2015, pp. 166-186.10.1016/j.bdr.2015.01.001Search in Google Scholar

30. Sun, N., J. G. Morris, J. Xu, X. Zhu, M. Xie. iCARE: A Framework for Big Data-Based Banking Customer Analytics. – IBM Journal of Research and Development, Vol. 58, 2014, pp. 4:1-4:9.10.1147/JRD.2014.2337118Search in Google Scholar

31. Batarseh, F. A., E. A. Latif. Assessing the Quality of Service Using Big Data Analytics: With Application to Healthcare. – Big Data Research, Vol. 4, 2016, pp. 13-24.10.1016/j.bdr.2015.10.001Search in Google Scholar

32. Archenaa, J., E. A. M. Anita. A Survey of Big Data Analytics in Healthcare and Government. – Procedia Computer Science, Vol. 50, 2015, pp. 408-413.10.1016/j.procs.2015.04.021Search in Google Scholar

33. Saraladevi, B., N. Pazhaniraja, P. V. Paul, M. S. S. Basha, P. Dhavachelvan. Big Data and Hadoop – a Study in Security Perspective. – Procedia Computer Science, Vol. 50, 2015, pp. 596-601.10.1016/j.procs.2015.04.091Search in Google Scholar

34. Uzunkaya, C., T. Ensari, Y. Kavurucu. Hadoop Ecosystem and Its Analysis on Tweets. – Procedia – Social and Behavioral Sciences, Vol. 195, 2015, pp. 1890-1897.10.1016/j.sbspro.2015.06.429Search in Google Scholar

35. Cassales, G. W., A. S. Charão, M. K. Pinheiro, C. Souveyet, L. A. Steffenel. Context-Aware Scheduling for Apache Hadoop over Pervasive Environments. – Procedia Computer Science, Vol. 52, 2015, pp. 202-209.10.1016/j.procs.2015.05.058Search in Google Scholar

36. Shyam, R., B. H. B. Ganesh, S. S. Kumar, P. Poornachandran, K. P. Soman. Apache Spark a Big Data Analytics Platform for Smart Grid. – Procedia Technology, Vol. 21, 2015, pp. 171-178.10.1016/j.protcy.2015.10.085Search in Google Scholar

37. Ma, Y., Y. Zhou, Y. Yu, C. Peng, Z. Wang, S. Du. A Novel Approach for Improving Security and Storage Efficiency on HDFS. – Procedia Computer Science, Vol. 52, 2015, pp. 631-635.10.1016/j.procs.2015.05.062Search in Google Scholar

38. Maitrey, S., C. K. Jha. MapReduce: Simplified Data Analysis of Big Data. – Procedia Computer Science, Vol. 57, 2015, pp. 563-571.10.1016/j.procs.2015.07.392Search in Google Scholar

39. Loshin, D. Chapter 7. Big Data Tools and Techniques. – In: Big Data Analytics. Boston, Morgan Kaufmann, 2013, pp. 61-72.10.1016/B978-0-12-417319-4.00007-7Search in Google Scholar

40. Yildiz, O., S. Ibrahim, G. Antoniu. Enabling Fast Failure Recovery in Shared Hadoop Clusters: Towards Failure-Aware Scheduling. – Future Generation Computer Systems, 2016.10.1016/j.future.2016.02.015Search in Google Scholar

41. Apache Hive TM. https://hive.apache.org/Search in Google Scholar

42. Chennamsetty, H., S. Chalasani, D. Riley. Predictive Analytics on Electronic Health Records (EHRs) Using Hadoop and Hive. – In: 2015 IEEE International Conference Electrical, Computer and Communication Technologies (ICECCT’15), 2015, pp. 1-5.10.1109/ICECCT.2015.7226129Search in Google Scholar

43. Xu, Y., S. Hu. QMapper: A Tool for SQL Optimization on Hive Using Query Rewriting. – In: Proc. of 22nd International Conference on World Wide Web, Rio De Janeiro, Brazil, ACM, Vol. 1, 2013, pp. 211-212.Search in Google Scholar

44. Apache Pig. https://pig.apache.org/Search in Google Scholar

45. Rajurkar, G. D., R. M. Goudar. Notice of Violation of IEEE Publication Principles, A Speedy Data Uploading Approach for Twitter Trend and Sentiment Analysis Using HADOOP. – In: International Conference on Computing Communication Control and Automation (ICCUBEA’15), Vol. 1, 2015, pp. 580-584.10.1109/ICCUBEA.2015.119Search in Google Scholar

46. Apache Flume. https://flume.apache.org/Search in Google Scholar

47. Apache Sqoop. http://sqoop.apache.org/Search in Google Scholar

48. Apache Spark. http://spark.apache.org/Search in Google Scholar

49. Li, H., K. Lu, S. Meng. Bigprovision: A Provisioning Framework for Big Data Analytics. – IEEE Network, Vol. 29, 2015, pp. 50-56.10.1109/MNET.2015.7293305Search in Google Scholar

50. Reyes-Ortiz, J. L., L. Oneto, D. Anguita. Big Data Analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf. – Procedia Computer Science, Vol. 53, 2015, pp. 121-130.10.1016/j.procs.2015.07.286Search in Google Scholar

51. Elia, D., S. Fiore, A. D’Anca, C. Palazzo, I. Foster, D. N. Williams. An In-Memory Based Framework for Scientific Data Analytics. – In: Proc. of ACM International Conference on Computing Frontiers, 2016, pp. 424-429.10.1145/2903150.2911719Search in Google Scholar

52. Apache ZooKeeper™. https://zookeeper.apache.org/Search in Google Scholar

53. Lin, H.-K., J. A. Harding, C.-I. Chen. A Hyperconnected Manufacturing Collaboration System Using the Semantic Web and Hadoop Ecosystem System. – Procedia CIRP, Vol. 52, 2016, pp. 18-23.10.1016/j.procir.2016.07.075Search in Google Scholar

54. Plase, D., L. Niedrite, R. Taranovs. Accelerating Data Queries on Hadoop Framework by Using Compact Data Formats. – In: 4th IEEE Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE’16), 2016, pp. 1-7.10.1109/AIEEE.2016.7821807Search in Google Scholar

55. Splice Machine. http://www.splicemachine.com/product/Search in Google Scholar

56. Wang, K., J. Mi, C. Xu, L. Shu, D. J. Deng. Real-Time Big Data Analytics for Multimedia Transmission and Storage. – In: IEEE/CIC International Conference on Communications in China (ICCC’16), 2016, pp. 1-6.10.1109/ICCChina.2016.7636815Search in Google Scholar

57. Golov, N., L. Rönnbäck. Big Data Normalization for Massively Parallel Processing Databases. Computer Standards & Interfaces Available Online, 2017. ISSN 0920-5489.10.1016/j.csi.2017.01.009Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo