Zacytuj

1. A. S. Popel and P. C. Johnson, Microcirculation and hemorheology, Annu. Rev. Fluid Mech., vol. 37, pp. 43–69, 2005.10.1146/annurev.fluid.37.042604.133933300068821151769Search in Google Scholar

2. G. Mchedlishvili and N. Maeda, Blood flow structure related to red cell flow: determinant of blood fluidity in narrow microvessels, The Japanese journal of physiology, vol. 51, no. 1, pp. 19–30, 2001.10.2170/jjphysiol.51.1911281993Search in Google Scholar

3. P. Ulker, L. Sati, C. Celik-Ozenci, H. Meiselman, and O. Baskurt, Mechanical stimulation of nitric oxide synthesizing mechanisms in erythrocytes, Biorheology, vol. 46, no. 2, pp. 121–132, 2009.10.3233/BIR-2009-053219458415Search in Google Scholar

4. J. Li-Guo, W. Heng-An, Z. Xiao-Zhou, and W. Xiu-Xi, Coarse-grained molecular dynamics simulation of a red blood cell, Chinese Physics Letters, vol. 27, no. 2, p. 028704, 2010.Search in Google Scholar

5. M. Ju, S. S. Ye, B. Namgung, S. Cho, H. T. Low, H. L. Leo, and S. Kim, A review of numerical methods for red blood cell flow simulation, Computer methods in biomechanics and biomedical engineering, vol. 18, no. 2, pp. 130–140, 2015.10.1080/10255842.2013.78357423582050Search in Google Scholar

6. A. Fasano and A. Sequeira, Hemomath: The mathematics of blood, vol. 18. Springer, 2017.10.1007/978-3-319-60513-5Search in Google Scholar

7. H. A. Svahn and A. van den Berg, Single cells or large populations?, Lab on a Chip, vol. 7, no. 5, pp. 544–546, 2007.10.1039/b704632b17476370Search in Google Scholar

8. G. Bao, Y. Bazilevs, J.-H. Chung, P. Decuzzi, H. D. Espinosa, M. Ferrari, H. Gao, S. S. Hossain, T. J. Hughes, R. D. Kamm, et al., Usnctam perspectives on mechanics in medicine, Journal of The Royal Society Interface, vol. 11, no. 97, p. 20140301, 2014.Search in Google Scholar

9. D. D. Carlo and L. P. Lee, Dynamic single-cell analysis for quantitative biology, 2006.10.1021/ac069490p17186633Search in Google Scholar

10. R. Rodríguez-García, I. López-Montero, M. Mell, G. Egea, N. S. Gov, and F. Monroy, Direct cytoskeleton forces cause membrane softening in red blood cells, Biophysical journal, vol. 108, no. 12, pp. 2794–2806, 2015.Search in Google Scholar

11. Z. Peng, X. Li, I. V. Pivkin, M. Dao, G. E. Karniadakis, and S. Suresh, Lipid bilayer and cytoskeletal interactions in a red blood cell, Proceedings of the National Academy of Sciences, vol. 110, no. 33, pp. 13356–13361, 2013.Search in Google Scholar

12. X. Li, Z. Peng, H. Lei, M. Dao, and G. E. Karniadakis, Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 372, no. 2021, p. 20130389, 2014.Search in Google Scholar

13. H.-Y. Chang, X. Li, and G. E. Karniadakis, Modeling of biomechanics and biorheology of red blood cells in type 2 diabetes mellitus, Biophysical journal, vol. 113, no. 2, pp. 481–490, 2017.10.1016/j.bpj.2017.06.015552931328746858Search in Google Scholar

14. D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Systematic coarse-graining of spectrin-level red blood cell models, Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 29-32, pp. 1937–1948, 2010.Search in Google Scholar

15. M. Arroyo, A. DeSimone, and L. Heltai, The role of membrane viscosity in the dynamics of fluid membranes, arXiv preprint arXiv:1007.4934, 2010.Search in Google Scholar

16. D. S. Rodrigues, R. F. Ausas, F. Mut, and G. C. Buscaglia, A semi-implicit finite element method for viscous lipid membranes, Journal of Computational Physics, vol. 298, pp. 565–584, 2015.10.1016/j.jcp.2015.06.010Search in Google Scholar

17. R. A. Sauer, Computational contact formulations for soft body adhesion, Advances in Soft Matter Mechanics, p. 55, 2012.10.1007/978-3-642-19373-6_2Search in Google Scholar

18. C. Lanczos, The variational principles of mechanics, 4th edn. Toronto University Press, Toronto, 1970.Search in Google Scholar

19. L. Scriven, Dynamics of a fluid interface equation of motion for newtonian surface fluids, Chemical Engineering Science, vol. 12, no. 2, pp. 98–108, 1960.10.1016/0009-2509(60)87003-0Search in Google Scholar

20. P. B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, Journal of theoretical biology, vol. 26, no. 1, pp. 61IN777–76IN881, 1970.10.1016/S0022-5193(70)80032-7Search in Google Scholar

21. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Zeitschrift für Naturforschung C, vol. 28, no. 11-12, pp. 693–703, 1973.10.1515/znc-1973-11-12094273690Search in Google Scholar

22. B. Seguin and E. Fried, Microphysical derivation of the canham–helfrich free-energy density, Journal of mathematical biology, vol. 68, no. 3, pp. 647–665, 2014.10.1007/s00285-013-0647-9369499723389779Search in Google Scholar

23. R. O. Rodrigues, D. Pinho, V. Faustino, and R. Lima, A simple microfluidic device for the deformability assessment of blood cells in a continuous flow, Biomedical microdevices, vol. 17, no. 6, p. 108, 2015.10.1007/s10544-015-0014-226482154Search in Google Scholar

24. R. Löhner, Regridding surface triangulations, Journal of Computational Physics, vol. 126, no. 1, pp. 1–10, 1996.10.1006/jcph.1996.0115Search in Google Scholar

25. A. Bonito, R. H. Nochetto, and M. S. Pauletti, Parametric fem for geometric biomembranes, Journal of Computational Physics, vol. 229, no. 9, pp. 3171–3188, 2010.Search in Google Scholar

26. G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA journal of numerical analysis, vol. 27, no. 2, pp. 262–292, 2007.10.1093/imanum/drl023Search in Google Scholar

27. G. Dziuk and C. M. Elliott, Finite element methods for surface pdes, Acta Numerica, vol. 22, pp. 289–396, 2013.10.1017/S0962492913000056Search in Google Scholar

28. R. E. Rusu, An algorithm for the elastic flow of surfaces, Interfaces and Free Boundaries, vol. 7, no. 3, pp. 229–239, 2005.10.4171/IFB/122Search in Google Scholar

29. W. Gratzer, The red cell membrane and its cytoskeleton., Biochemical Journal, vol. 198, no. 1, p. 1, 1981.10.1042/bj198000111632037034726Search in Google Scholar

30. J. Hansen, R. Skalak, S. Chien, and A. Hoger, An elastic network model based on the structure of the red blood cell membrane skeleton, Biophysical journal, vol. 70, no. 1, pp. 146–166, 1996.10.1016/S0006-3495(96)79556-5Search in Google Scholar

31. D. Fedosov, B. Caswell, and G. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology and dynamics, Biophys. J., vol. 98, pp. 2215–2225, 2010.Search in Google Scholar

32. D. A. Fedosov, H. Lei, B. Caswell, S. Suresh, and G. E. Karniadakis, Multiscale modeling of red blood cell mechanics and blood flow in malaria, PLoS computational biology, vol. 7, no. 12, p. e1002270, 2011.10.1371/journal.pcbi.1002270322877022144878Search in Google Scholar

33. D. A. Fedosov, B. Caswell, and G. E. Karniadakis, Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics, in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4266–4269, 2009.Search in Google Scholar

34. L. Freund and Y. Lin, The role of binder mobility in spontaneous adhesive contact and implications for cell adhesion, Journal of the Mechanics and Physics of Solids, vol. 52, no. 11, pp. 2455–2472, 2004.Search in Google Scholar

35. E. Kuusela and W. Alt, Continuum model of cell adhesion and migration, Journal of mathematical biology, vol. 58, no. 1-2, p. 135, 2009.10.1007/s00285-008-0179-x18488227Search in Google Scholar

36. I. Pajic-Lijakovic and M. Milivojevic, Modeling analysis of the lipid bilayer–cytoskeleton coupling in erythrocyte membrane, Biomechanics and modeling in mechanobiology, vol. 13, no. 5, pp. 1097–1104, 2014.Search in Google Scholar

37. J. N. Israelachvili, Intermolecular and surface forces. Academic press, 2011.Search in Google Scholar

38. L. Meacci, G. C. Buscaglia, R. F. Ausas, and F. Mut, A red blood cell cyto-bilayer interaction model, Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, vol. 7, no. 1, 2020.10.5540/03.2020.007.01.0344Search in Google Scholar

39. S. Hillringhaus, A. K. Dasanna, G. Gompper, and D. A. Fedosov, Importance of erythrocyte deformability for the alignment of malaria parasite upon invasion, Biophysical journal, vol. 117, no. 7, pp. 1202–1214, 2019.Search in Google Scholar

40. S. Hillringhaus, A. K. Dasanna, G. Gompper, and D. Fedosov, Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion, bioRxiv, 2020.10.1101/2020.03.01.971986Search in Google Scholar

41. D. T. Riglar, D. Richard, D. W. Wilson, M. J. Boyle, C. Dekiwadia, L. Turnbull, F. Angrisano, D. S. Marapana, K. L. Rogers, C. B. Whitchurch, et al., Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte, Cell host & microbe, vol. 9, no. 1, pp. 9–20, 2011.10.1016/j.chom.2010.12.00321238943Search in Google Scholar

42. T. M. Fischer, Shape memory of human red blood cells, Biophysical journal, vol. 86, no. 5, pp. 3304–3313, 2004.Search in Google Scholar

43. T. Baumgart, S. T. Hess, and W. W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, vol. 425, no. 6960, p. 821, 2003.Search in Google Scholar

44. U. Seifert, Configurations of fluid membranes and vesicles, Advances in physics, vol. 46, no. 1, pp. 13–137, 1997.10.1080/00018739700101488Search in Google Scholar

45. I. V. Pivkin and G. E. Karniadakis, Accurate coarse-grained modeling of red blood cells, Physical review letters, vol. 101, no. 11, p. 118105, 2008.Search in Google Scholar

46. S. K. Veerapaneni, R. Raj, G. Biros, and P. K. Purohit, Analytical and numerical solutions for shapes of quiescent two-dimensional vesicles, International Journal of Non-Linear Mechanics, vol. 44, no. 3, pp. 257–262, 2009.10.1016/j.ijnonlinmec.2008.10.004Search in Google Scholar

47. N. Gov, A. Zilman, and S. Safran, Cytoskeleton confinement and tension of red blood cell membranes, Physical review letters, vol. 90, no. 22, p. 228101, 2003.Search in Google Scholar

48. T. Betz, M. Lenz, J.-F. Joanny, and C. Sykes, Atp-dependent mechanics of red blood cells, Proceedings of the National Academy of Sciences, vol. 106, no. 36, pp. 15320–15325, 2009.Search in Google Scholar

49. Y.-H. Tang, L. Lu, H. Li, C. Evangelinos, L. Grinberg, V. Sachdeva, and G. E. Karniadakis, Openrbc: a fast simulator of red blood cells at protein resolution, Biophysical journal, vol. 112, no. 10, pp. 2030–2037, 2017.Search in Google Scholar

50. S.-P. Fu, Z. Peng, H. Yuan, R. Kfoury, and Y.-N. Young, Lennard-jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in lammps, Computer Physics Communications, vol. 210, pp. 193–203, 2017.10.1016/j.cpc.2016.09.018Search in Google Scholar

eISSN:
2038-0909
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics