Zacytuj

[1] Kala, C., P., (2004), Indigenous uses and structure of chir pine forest in Uttaranchal, Himalaya, India. International Journal of Sustainable & World Ecology 11(2), 205–210.10.1080/13504500409469824Search in Google Scholar

[2] Merila, P., Derome, J. (2008), Relationship between needle nutrient composition in Scots pine and Norway spruce and their respective concentrations in the organic layer and in percolation water. Boreal Env. Research 13 (suppl. B), 35–47.Search in Google Scholar

[3] Dhaundiyal, A., Gupta, V. K. (2014), Analysis of pine needles as a substrate for gasification. Journal of Water, Energy and Environment 15, 73–81.10.3126/hn.v15i0.11299Search in Google Scholar

[4] Lv, P., Wu, C., Ma, L., Yuan, Z. (2008), A study on the economic efficiency of hydrogen production from biomass residues in china. Renewable Energy 33(1), 1874–1879.10.1016/j.renene.2007.11.002Search in Google Scholar

[5] Kendry, M. (2002), Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83, 37–46.10.1016/S0960-8524(01)00118-3Search in Google Scholar

[6] Szczodrak, J., Fiedurek, J. (1996), Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 49(2), 367–375.10.1016/0961-9534(95)00114-XSearch in Google Scholar

[7] White, J. E., Catallo, W. J., Legendra, B. L. (2011), Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis 91(1), 1–33.Search in Google Scholar

[8] Ghetti, P., Ricca, L., Angelini, L. (1996), Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75(5), 565–573.10.1016/0016-2361(95)00296-0Search in Google Scholar

[9] Seo, D. K., Park, S. S., Junghoyu, T. U. (2010), Study of the pyrolysis of biomass using thermo-gravimetric analysis (tga) and concentration measurements of the evolved species. Journal of Analytical and Applied Pyrolysis 89(1), 66–73.10.1016/j.jaap.2010.05.008Search in Google Scholar

[10] Giuntoli, J., De Jong, W., Arvelakis, S., Spliethoff, H., Verkooijen, A. H. M. (2009), Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: dry distiller’s grains with solubles (ddgs) and chicken manure. Journal of Analytical and Applied Pyrolysis 85(1), 301–312.10.1016/j.jaap.2008.12.007Search in Google Scholar

[11] Lapuerta, M., Hernández, J. J., & Rodríguez, J. (2004), Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass and Bioenergy 27(1), 385–91.10.1016/j.biombioe.2003.11.010Search in Google Scholar

[12] Zhu, H. M., Yan, J. H., Jiang, X. G., Lai, Y. E., Cen, K. F. (2009), Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Journal of Hazardous Materials 162(2), 646–651.Search in Google Scholar

[13] Folgueras, M. B., Díaz, R. M., Xiberta J., Prieto, I. (2003), Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel 82, 1051–1055.10.1016/S0016-2361(03)00161-3Search in Google Scholar

[14] Otero, M., Calvo, L. F., Gil, M. V., García, A. I., Morán, A. (2008), Combustion of different sewage sludge and coal: a nonisothermal thermogravimetric kinetic analysis. Bioresource Technol 99, 6311–6319.10.1016/j.biortech.2007.12.011Search in Google Scholar

[15] Koreòová, Z., Juma, M., Annus, J., Markoš, J., Jelemenský, L. (2006), Kinetics of pyrolysis and properties of carbon black from a scrap tire. Chemical Papers 60, 422.10.2478/s11696-006-0077-xSearch in Google Scholar

[16] Stenseng, M., Jensen, A., Dam-Johansen, K. (2001), Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry. Journal of Analytical and Applied Pyrolysis 765, 58–59.10.1016/S0165-2370(00)00200-XSearch in Google Scholar

[17] Di Blasi, C. (2008), First principal modeling of the pyrolysis of a thick biomass slab exposed to thermal radiation: a transient study for tar, char and hydrocarbon formation progress. Energy and combustion science 34(5), 47–90.Search in Google Scholar

[18] Aboyade, A. O., Hugo, T. J., Carrier, M., Meyer, E. L., Stahl, R., Knoetze, J. H., Görgens, J. F. (2011), Non-isothermal kinetic analysis of corn cobs and sugar cane bagasse pyrolysis. Thermochimica Acta 517, 81–89.10.1016/j.tca.2011.01.035Search in Google Scholar

[19] Šimon, P. (2004), Isoconversional methods fundamentals, meaning and application. Journal of Thermal Analysis and Calorimetry 76, 123–132.10.1023/B:JTAN.0000027811.80036.6cSearch in Google Scholar

[20] Nowicki, L., Stolarek, P., Olewski, T., Bedyk, T., Ledakowicz, S. (2008), Mechanism and kinetics of sewage sludge pyrolysis by thermogravimetry and mass spectrometry analysis. Chemical and Process Engineering 29, 813–825.Search in Google Scholar

[21] Cetin, E., Moghtaderi, B., Gupta, R., Wall, T. F. (2004), Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83, 2139–2150.10.1016/j.fuel.2004.05.008Search in Google Scholar

[22] Di Blasi, C. (2009), Combustion and gasification rates of lignocellulosic chars, Progr. Energy Comb. Sci. 35, 121–140.Search in Google Scholar

[23] Santacesaria, E. (1999), Fundamental chemical kinetics: the first step to reaction modelling and reaction engineering. Catal Today, 113–123.10.1016/S0920-5861(99)00069-3Search in Google Scholar

[24] Prakash, N., Karunanithi, T. (2008), Kinetic modeling in biomass pyrolysis. A review. Journal of Applied Sciences Research 4, 1627–1636.Search in Google Scholar

[25] Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D. (2002), Pyrolysis behavior and kinetics of biomass derived materials. Journal of Analytical and Applied Pyrolysis 62, 331–349.10.1016/S0165-2370(01)00129-2Search in Google Scholar

[26] Kilzer, F. J., Broido, A. (1965), Speculation on the nature of cellulose pyrolysis. Pyrodynamics 2, 151–163.Search in Google Scholar

[27] Antal, M. J., Jr., Varhegyi, G. (1995), Cellulose pyrolysis kinetics: the current state of knowledge. Industrial and Engineering Chemistry Research 34, 703–717.10.1021/ie00042a001Search in Google Scholar

[28] Varhegyi, G., Antal, M. J., Jr., Jakab, E., Szabo, P. (1997), Kinetic modeling of biomass pyrolysis. Journal of Analytical Pyrolysis 42, 73–87.10.1016/S0165-2370(96)00971-0Search in Google Scholar

[29] Varhegyi, G., Jakab, E., Antal, M. J. (1994), Is the broido–shafizadeh model for cellulose pyrolysis true? Energy & Fuels 8, 1345–1352.10.1021/ef00048a025Search in Google Scholar

[30] Banyasz, J. L., Li, S., Lyons-Hart, J., Shafer, K. H. (2001a), Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution. Journal of Analytical and Applied Pyrolysis 57(2), 223–248.10.1016/S0165-2370(00)00135-2Search in Google Scholar

[31] Li, S., Lyons-Hart, J., Banyasz, J. L., Shafer, K. H. (2001), Real-time evolved gas analysis by FTIR method: an experimental Study of cellulose pyrolysis. Fuel 80, 1809–1817.10.1016/S0016-2361(01)00064-3Search in Google Scholar

[32] Mamleev, V., Bourbigot, S., Yvon, J. (2007), Kinetic analysis of the thermal decomposition of cellulose: the change of the Rate limitation. Journal of Analytical and Applied Pyrolysis 80, 141–150.10.1016/j.jaap.2007.01.012Search in Google Scholar

[33] Broido, A., Weinstein, M. (1972), Low temperature isothermal pyrolysis of cellulose. Thermal analysis, 285–296.10.1007/978-3-0348-5775-8_25Search in Google Scholar

[34] Bradburry, A. G. W., Sakai, Y., Shafizadeh, F. (1979), A kinetic model for pyrolysis of cellulose. Journal of Applied Polymer Science 23, 3271–3280.10.1002/app.1979.070231112Search in Google Scholar

[35] Vyazovkin, S., Dollimore, D. (1996), Linear and nonlinear procedures in isoconversional computations of the activation. Energy of nonisothermal reactions in solids. Journal of Chemical Information and Modeling 36, 42–45.Search in Google Scholar

[36] Flynn, J. H. (1997), The 'temperature integral' – its use and abuse. Thermochimica Acta 300, 83–92.10.1016/S0040-6031(97)00046-4Search in Google Scholar

[37] Friedman, H. L. (1964), Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a Phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia 6, 183–195.10.1002/polc.5070060121Search in Google Scholar

[38] Vyazovkin, S., Burnham, A. K., Criado, J. M., Perez-Maqueda, L. A., Popescu, C., Sbirrazzuoli, N. (2011), ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520, 1–19.10.1016/j.tca.2011.03.034Search in Google Scholar

[39] Brown, M. E., Maciejewski, M., Vyazovkin, S., Nomen, R., Sempere, J., Burnham, A., Opfermann, J., Strey, R., Anderson, H. L., Kemmler, A., Keuleers, R., Janssens, J., Desseyn, H. O., Li, C. R., Tang, T. B., Roduit, B., Malek, J., Mitsuhashi, T. (2000), Computational aspects of kinetic analysis: part a: the ICTAC kinetics project-data, methods and results. Thermochimica Acta 355, 125–143.10.1016/S0040-6031(00)00443-3Search in Google Scholar

[40] Yagi, S., Kunii, D. (1955), In: Proc. 5th Int. Symp. On combustion. Journal of Analytical and Applied Pyrolysis 42.Search in Google Scholar

[41] Sohn, H. Y., Wadsworth, M. E. (1979), Rate processes of extractive metallurgy. Plenum press, New York.10.1007/978-1-4684-9117-3Search in Google Scholar

[42] Levenspiel, O. (1972), Fluid-particle reactions. In: chemical reaction engineering, 2nd ed. pp. 357–400. John Wiley &Sons, Singapore.Search in Google Scholar

[43] Szekely J., Ewans, J. W., Sohn H. I. (1976), Gas-solid reactions. New York: Academic Press.Search in Google Scholar

[44] Vallet, P. (1961), Tables numkriques permettant l'integration des constantes de francais, anglais, espagnol). Vitesse par rapport a la temperature (texte trilingue: Gauthier-Villars, Paris).Search in Google Scholar

[45] Hollagh, A. R. E., Alamdari, E. K., Moradkhani, D., Salardini A. A. (2013), Kinetic analysis of isothermal leaching of zinc from zinc plant residue. International Journal of Nonferrous Metallurgy 2, 10–20.10.4236/ijnm.2013.21002Search in Google Scholar

[46] Gašparovič, L., Koreňová, Z., Jelemenský, L. (2009), Kinetic study of wood chips decomposition, 36thInternational conference of SSCHE, May 2529.Search in Google Scholar

[47] Bedyk, T., Nowicki, L., Stolarek, P., Ledakowicz, S. (2009), Effect of cao and dolomite additive in the thermal decomposition of sewage sludge in an inert atmosphere. J. Residuals Sci. Technol. 6(1), 3–10.Search in Google Scholar

[48] Milosavljevic, I., Suuberg, E. M. (1995), Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind. Eng. Chem. Res 34, 1081–1091.Search in Google Scholar

[49] Bilbao, R., Mastral, J. F., Aldea, M. E., Ceamanos, J. (1997), Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere. J. Anal. Appl. Pyrol. 39, 53–64.10.1016/S0165-2370(96)00957-6Search in Google Scholar

[50] Baker, R. R. (1978), Kinetic parameters from the non-isothermal decomposition of a multi-component solid. Thermochim Acta 23(2), 201–212.10.1016/0040-6031(78)85062-XSearch in Google Scholar

[51] Encinar, J. M., Gonzalez, J. F., Gonzalez, J. (2000), Fixed-bed pyrolysis of cynara cardunculus l. Product yields and compositions fuel process. Technol 68, 209–222.Search in Google Scholar

[52] Shafizadeh, F. (1982), Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrolysis 3, 283–305.10.1016/0165-2370(82)80017-XSearch in Google Scholar

[53] Zanzi, R. (2001), Pyrolysis of biomass, dissertation, royal institute of technology, department of chemical engineering and technology, Stockholm.Search in Google Scholar

[54] Zanzi, R., Sjosyrom, K., Bjombom E. (2002), Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy 23(5), 356–366.10.1016/S0961-9534(02)00061-2Search in Google Scholar

[55] Steve Aston, Stefan Doerr, Alayne Street-P. (2013), The impacts of pyrolysis temperature and feedstock type on biochar properties and the effects of biochar application on the properties of a sandy loam. Geophysical Research Abstracts, vol. 15, EGU2013-11083, Egu General Assembly 2013.Search in Google Scholar

[56] Gustsfsoon, C., Richards, T. (2009), Pyrolysis kinetics of washed precipitated lignin. Bio resources 4(1), 26–37.Search in Google Scholar

[57] Caballero, J. A., Font, R., Marcilla, A. (1996), Study of primary pyrolysis of kraft lignin at high heating rates: yields and kinetics. Journal of Analytical and Applied Pyrolysis 36(2), 159–178.10.1016/0165-2370(96)00929-1Search in Google Scholar

[58] Lee, C. K., Chaiken R. F., Singer, J. M. (1976), Charring pyrolysis of wood in fires by laser simulation. 16th Symposium (Intl.) on Combustion, Combustion Institute, Pitts, pp. 1459–1470.Search in Google Scholar

[59] Lopez Pasquali, C. E., Herrera, H. (1997), Pyrolysis of ligin and ir analysis of residues. Thermochimica Acta 293(1–2), 39–46.10.1016/S0040-6031(97)00059-2Search in Google Scholar

[60] Vovelle, C., Mellottee, H., Delbourgo, R. (1983), Kinetics of thermal degradation of wood and cellulose by T.G.A. comparison of the calculation techniques. Am. Chem. Soc., Div. Fuel Chem.; (United States); journal volume: 28:5; conference: 186. National meeting of the American Chemical Society, Washington, DC, USA. http://web.anl.gov/pcs/acsfuel/preprint%20archive/files/28_5_washington%20dc_08-83_0291.pdfSearch in Google Scholar

[61] Órfão, J. J. M., Antunes F. J. A, Figueiredo, J. L. (1999), Pyrolysis kinetics of lignocellulosic materials three independent reactions model. Fuels 78, 349–358.10.1016/S0016-2361(98)00156-2Search in Google Scholar

eISSN:
2068-2964
Język:
Angielski
Częstotliwość wydawania:
Volume Open
Dziedziny czasopisma:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other