1. bookTom 17 (2017): Zeszyt 2 (May 2017)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

An in vitro study on the ability of tannic acid to inhibit methanogenesis and biohydrogenation of C18 PUFA in the rumen of goats

Data publikacji: 28 Apr 2017
Tom & Zeszyt: Tom 17 (2017) - Zeszyt 2 (May 2017)
Zakres stron: 491 - 502
Otrzymano: 20 Jan 2016
Przyjęty: 26 Sep 2016
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Bhatta R., Baruah L., Saravanan M., Suresh K.P., Sampath K.T. (2012). Effect of tannins from medicinal and aromatic plants on rumen fermentation, protozoa population and methanogenesis in vitro. J. Anim. Physiol. Anim. Nutr., 97: 446-456.Search in Google Scholar

Bhatta R., Saravanan M., Baruah L., Sampath K.T., Prasad C.S. (2013). Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. J. App. Microbiol., 115: 455-465.Search in Google Scholar

Bhatta R., Saravanan M., Baruah L., Prasad C.S. (2015). Effects of graded levels of tannincontaining tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J. App. Microbiol., 118: 557-564.Search in Google Scholar

Bouchard K., Wittenberg K.M., Legesse G., Krause D.O., Khafipour E., Buckley K.E., Ominski K.H. (2015). Comparison of feed intake, body weight gain, enteric methane emission and relative abundance of rumen microbes in steers fed sainfoin and lucerne silages under western Canadian conditions. Grass Forage Sci., 70: 116-129.Search in Google Scholar

Buccioni A., Minieri S., Rapaccini S., Antongiovanni M., Mele M. (2011). Effect of chestnut and quebracho tannins on fatty acid profile in rumen liquid- and solid-associated bacteria: an in vitro study. Animal, 5: 1521-1530.Search in Google Scholar

Buccioni A., Decandiab M., Minieri S., Molle G., Cabiddu A. (2012). Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol., 174: 1- 25.Search in Google Scholar

Buccioni A., Pauselli M., Viti C., Minieri S., Pallara G., Roscini V., Rapaccini S., Trabalz M., Marinucci P., Conte G., Mele M. (2015). Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes. J. Dairy Sci., 98: 1145-1156.Search in Google Scholar

Bueno I.C.S., Brandi R.A., Franzolin R., Benete G., Fagundes G.M., Abdalla A.L., Louvandini H., Muir J.P. (2015). In vitro methane production and tolerance to condensed tannins in five ruminant species. Anim. Feed Sci. Technol., 205: 1-9.Search in Google Scholar

Busquet M., Calsamiglia S., Ferret A., Kamel C. (2006). Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci., 89: 761-771.Search in Google Scholar

Durmic Z., Mcsweeney C.S, Kemp G.W., Hutton P., Wallace R.G., Vercoe P.E. (2008). Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. Anim. Feed Sci. Technol., 145: 271-284.Search in Google Scholar

Ebrahimi M., Rajion M.A., Goh Y.M., Farjam A.S., Oskoueian E., Jafari S. (2015). Diet high in α-linolenic acid up-regulate PPAR-α gene expression in the liver of goats. Electron J. Biotech., 18: 210-214.Search in Google Scholar

Fievez V., Babayemi O.J., Demeyer D. (2005). Estimation of direct and indirect gas production in syringes: Atool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol., 123: 197-210.Search in Google Scholar

Folch J., Lees M., Sloane Stanely G.H. (1957). Asimple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497-50.Search in Google Scholar

Frutos P., Hervás G., Giráldez F.J., Mantecón A.R. (2004). Review: Tannins and Ruminant Nutrition. Span. J. Agric. Res., 2: 191-202; doi:10.5424/73.Search in Google Scholar

Halim S.Z., Abdollah N.R., Afzan A., Abdollah Rashid B.A., Jantan A., Ana Ismaeil Z. (2011). Acute toxicity study of Carica papaya leaf extract in Sprague Dawley rats. J. Med. Plants Res., 5: 1867-1872.Search in Google Scholar

IPCC (2007). Summary for policymakers. In: Climate Change 2007, Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (eds). Mitigation of Climate Change, Contribution of Working Group IIIto the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UKand New York, NY, USA.Search in Google Scholar

Jayanegara A., Kreuzer M., Wina E., Leiber E. (2011). Significance of phenolic compounds in tropical forages for the ruminal bypass of polyunsaturated fatty acids and the appearance of biohydrogenation intermediates as examined in vitro. Anim. Prod. Sci., 51: 1127-1136.Search in Google Scholar

Jayanegara A., Kreuzer M., Leiber F. (2012). Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livest. Sci., 147: 104-112.Search in Google Scholar

Jayanegara A., Goel G., Makkar P.S.H., Becker K. (2015). Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol., 209: 60-68.Search in Google Scholar

Kamra D.N., Pawar M., Singh B. (2012). Effect of Plant Secondary Metabolites on Rumen Methanogens and Methane Emissions by Ruminants. Patra A.K. (ed.), Dietary Phyto. Micro. Chapter 12.10.1007/978-94-007-3926-0_12Search in Google Scholar

Krueger W.K., Gutierrez- Bañuelos H., Carstens G.E., Min B.R., Pinchak W.E., Gomez R.R., Anderson R.C., Krueger N.A., Forbes T.D.A. (2010). Effects of Dietary Tannin Source on Performance, Feed Efficiency, Ruminal Fermentation, and Carcass and Non- Carcass Traits in Steers Feda High-Grain Diet. Anim. Feed. Sci. Technol., 159: 1-9; doi:10.1016/j. anifeedsci.2010.05.003.Search in Google Scholar

Kumar R., Kamra DN., Agarwal N., Chaudhary L.C. Zadbuke S.S. (2011). Effect of tree leaves containing plant secondary metabolites on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Anim. Nutr. Feed Technol., 11: 103-114.Search in Google Scholar

Makkar H.P.S., Francis G., Becker K. (2007). Bioactivity of Phytochemicals in Some Lesser- Known Plants and Their Effects and Potential Applications in Livestock and Aquaculture Production Systems. Animal, 1: 1371-1391; doi:10.1017/S1751731107000298.Search in Google Scholar

McSweeney C.S., Palmer B., Mc Neill D.M., Krause D.O. (2001). Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Technol., 91: 83-93.Search in Google Scholar

Patra A.K., Saxena J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agri., 91: 24-37.Search in Google Scholar

Pinski B., Günal M., Abughazaleh A.A. (2015). The effects of essential oil and condensed tannin on fermentation. Anim. Prod. Sci., http://dx.doi.org/10.1071/AN15069.10.1071/AN15069Search in Google Scholar

Reed J.D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci., 73: 1516-1528.Search in Google Scholar

Śliwiński B.J., Kreuzer M., Wettstein H.R., Machmüller A. (2002). Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Arch. Anim. Nutr., 56: 379-392.Search in Google Scholar

Solorzano L. (1969). Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr., 14: 799-801.Search in Google Scholar

Tan H.Y., Sieo C.C., Abdullah N., Liang J.B., Huang X.D., Ho Y.W. (2011). Effects of condensed tannins from leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol., 169: 185-193.Search in Google Scholar

Tavendale M.H., Meagher L.P., Pacheco D., Walker N., Attwood G.T., Sivakumaran S. (2005). Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol., 123: 403-419.Search in Google Scholar

Toral P.G., Hervás G., Bichi E., Belenguer Á., Frutos P. (2011). Tannins as feed additives to modulate ruminal biohydrogenation: Effects on animal performance, milk fatty acid composition and ruminal fermentation in dairy ewes fedadiet containing sunflower oil. Anim. Feed Sci. Technol., 164: 199-206.Search in Google Scholar

Vasta V., Makkar H.P.S., Mele M., Priolo A. (2009). Ruminal biohydrogenation as affected by tannins in vitro. British J. Nutr, 102: 82-92.Search in Google Scholar

Wanapat M., Cherdthong A., Pakdee P., Wanapat S. (2008). Manipulation of rumen ecology by dietary lemongrass (Cymbopogon citrates Stapf.) powder supplementation. J. Anim. Sci., 86: 3497-3503.Search in Google Scholar

Wei M., Ren L., Zhou Z., Meng Q. (2012). Effect of addition of three plant extracts on gas production, ruminal fermentation, methane production and ruminal digestibility based on an in vitro technique. J. Anim. Vet. Adv., 11: 4304-4309.Search in Google Scholar

Wischer G., Boguhn J., Steinga H., Schollenberger M., Rodehutscord M. (2013). Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro. Animal, 7: 1796-1805. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo