1. bookTom 16 (2016): Zeszyt 2 (April 2016)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

17. A 22:6 n-3 Rich Supplement Affects the Ruminal Microbial Community and Fermentation and Alters Plasma Metabolites

Data publikacji: 06 May 2016
Tom & Zeszyt: Tom 16 (2016) - Zeszyt 2 (April 2016)
Zakres stron: 533 - 550
Otrzymano: 08 Dec 2014
Przyjęty: 19 Jan 2016
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

AOAC, Official Methods of Analysis (16th ed.). Association of Official Analytical Chemists, Arlington, VA (1990).Search in Google Scholar

Belenguer A., Toral P.G., Frutos P., Hervás G. (2010). Changes in the rumen bacterial community in response to sunflower oil and fish oil supplements in the diet of dairy sheep. J. Dairy Sci., 93: 3275-3286.Search in Google Scholar

Boeckaert C., Fievez V., Van Hecke D., Verstraete W., Boon N. (2007). Changes in rumen biohydrogenation intermediates and ciliate protozoa diversity after algae supplementation to dairy cattle. Eur. J. Lipid. Sci. Technol., 109: 767-777.Search in Google Scholar

Boeckaert C., Vlaeminck B., Fievez V., Maignien L., Dijkstra J., Boon N. (2008). Accumulation of trans C18:1 fatty acids in the rumen after dietary algae supplementation is associated with shifts in Butyrivibrio species. Appl. Environ. Microbiol., 74: 6923-6930.Search in Google Scholar

Buccioni A., Decandia M., Minieri S., Molle G., Cabiddu A. (2012). Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed. Sci. Tech., 174: 1-25.Search in Google Scholar

Castro-Carrera T., Toral P.G., Frutos P., Mc Ewan N.R., Hervás G., Abecia L., Pin- loche E., Girdwood S.E., Belenguer A. (2014). Rumen bacterial community evaluated by 454 pyrosequencing and terminal restriction fragment length polymorphism analyses in dairy sheep fed marine algae. J. Dairy Sci., 97: 1661-1669.Search in Google Scholar

Cheng Y., Mao S.Y., Pei C., Liu J.H., Zhu W.Y. (2006). Detection and diversity analysis of rumen methanogens in the co-cultures with anaerobic fungi. Acta Microbiologica Sinica, 46: 879-883.Search in Google Scholar

Childs S., Hennessy A.A., Sreenan J.M., Wathes D.C., Cheng Z., Stanton C., Dis- kin M.G., Dehority B.A. (1984). Evaluation of subsampling and fixation procedures used for counting rumen protozoa. Appl. Environ. Microbiol., 48: 182-185.Search in Google Scholar

Cooper S.L., Sinclair L.A., Wilkinson R.G., Hallett K.G., Enser M., Wood J.D. (2004). Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs. J. Anim. Sci., 82: 1461-1470.Search in Google Scholar

Denman S.E., Mc Sweeney C.S. (2006). Development ofareal-time PCRassay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol., 58: 572-582.Search in Google Scholar

Duckett S.K., Gillis M.H. (2010). Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J. Anim. Sci., 88: 2684-2691.Search in Google Scholar

Fievez V., Dohme F., Danneels M., Raes K., Demeyer D. (2003). Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Anim. Feed Sci. Technol., 104: 41-58.Search in Google Scholar

Fievez V., Boeckaert C., Vlaeminck B., Mestdagh J., Demeyer D. (2007). In vitro examination of DHA-edible micro-algae: 2. Effect on rumen methane production and apparent degradability of hay. Anim. Feed Sci. Technol., 136: 80-95.Search in Google Scholar

Harfoot C.G., Hazlewood G.P. (1997). Lipid metabolism in the rumen. In: Hobson P.N., Stewart D.S. (eds.) The Rumen Microbial Ecosystem. Chapman & Hall, London, UK. pp. 382-426.Search in Google Scholar

Hristov A., Kennington L., Mc Guire M., Hunt C. (2005). Effect of diets containing linoleic acid- or oleic acid-rich oils on ruminal fermentation and nutrient digestibility, and performance and fatty acid composition of adipose and muscle tissues of finishing cattle. J. Anim. Sci., 83: 1312-1321.Search in Google Scholar

Huws S.A., Lee M.R., Muetzel S.M., Scott M.B., Wallace R.J., Scollan N.D. (2010). Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol. Ecol., 73: 396-407.Search in Google Scholar

Janeczek W., Pogoda-Sewerniak K., Dzięcioł M., Szołtysik M., Zawadzki W. (2011). Influence of marine algae and fish oil application on dairy cows metabolism. Acta Scientiarum Polonorum-Medicina Veterinaria, 10: 35-45.Search in Google Scholar

Kim E.J., Huws S.A., Lee M.R.F., Wood J.D., Muetzel S.M., Wallace R.J., Scol - lan N.D. (2008). Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr., 138: 889-896.Search in Google Scholar

Konstantinov S.R., Zhu W.Y., Williams B.A., Tamminga S., Vos W.M., Akker- mans A.D.L. (2003). Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16Sribosomal DNA. FEMS Microbiol. Ecol., 43: 225-235.Search in Google Scholar

Kupczyński R., Szołtysik M., Janeczek W., Chrzanowska J., Kinal S., Króli - czewska B. (2011). Effect of dietary fish oil on milk yield, fatty acids content and serum metabolic profile in dairy cows. J. Anim. Physiol. An. N., 95: 512-522.Search in Google Scholar

Lane D. (1991). 16S/23Sr RNAsequencing. Nucleic acid techniques in bacterial systematics, pp. 125-175.Search in Google Scholar

Liu S., Bu D., Wang J., Liu L., Liang S., Wei H., Zhou L., Li D., Loor J. (2012). Effect of incremental levels of fish oil supplementation on specific bacterial populations in bovine ruminal fluid. J. Anim. Physiol. Anim. Nutr., 96: 9-16.Search in Google Scholar

Lunn J., Theobald H.E. (2006). The health effects of dietary unsaturated fatty acids. Nutrition Bulletin, 31: 178-224.Search in Google Scholar

Maia M.R.G., Chaudhary L.C., Figueres L., Wallace R.J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Leeuwenhoek, 91: 303-314.Search in Google Scholar

Maia M.R.G., Chaudhary L.C., Bestwick C.S., Richardson A.J., Mc Kain N., Lar- son T.R., Graham I.A., Wallace R.J. (2010). Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiology, 10: 52-61.Search in Google Scholar

Mao S.Y., Zhang G., Zhu W.Y. (2007). Effect of disodium fumarate on in vitro rumen fermentation of different substrates and rumen bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16s ribosomal DNA. Asian-Aust. J. Anim. Sci., 20: 543-549.Search in Google Scholar

Mashek D.G., Bertics S.J., Grummer R.R. (2002). Metabolic fate of long-chain unsaturated fatty acids and their effects on palmitic acid metabolism and gluconeogenesis in bovine hepatocytes. J. Dairy Sci., 85: 2283-2289.Search in Google Scholar

Ministry of Agriculture of China (2004). Feeding standard of meat-producing sheep and goats (NY/ Y816-2004). China Agricultural Press, Beijing, China.Search in Google Scholar

Mirzaei F., Rezaeian M., Towhidi A., Nik- Khah A., Sereshti H. (2009). Effects of fish oil, safflower oil and monensin supplementation on performance, rumen fermentation parameters and plasma metabolites in Chall sheep. Int. J. Vet. Res., 3: 113-128.Search in Google Scholar

Mosoni P., Chaucheyras- Durand F., Béra-Maillet C., Forano E. (2007). Quantification by real-time PCRof cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect ofayeast additive. J. Appl. Microbiol., 103: 2676-2685.Search in Google Scholar

Nocek J., Russell J. (1988). Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci., 71: 2070-2107.Search in Google Scholar

Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R.I., Lud- wig W., Backhaus H. (1996). Sequence heterogeneities of genes encoding 16Sr RNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol., 178: 5636-5643.Search in Google Scholar

Orpin C., Letcher A. (1979). Utilization of cellulose, starch, xylan, and other hemicelluloses for growth by the rumen phycomycete Neocallimastix frontalis. Curr. Microbiol., 3: 121-124.Search in Google Scholar

Paillard D., Mc Kain N., Chaudhary L., Walker N., Pizette F., Koppova I., Mc - Ewan N., Kopečný J., Vercoe P., Louis P., Wallace R. (2007). Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Leeuwenhoek, 91: 417-422.Search in Google Scholar

Shannon C.E., Weaver W. (1963). The mathematical theory of communication. University of Illinois Press, Urbana, IL, U.S.A.Search in Google Scholar

Shingfield K.J., Ahvenjärvi S., Toivonen V., Ärölä A. (2003). Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim. Sci., 77: 165-179.Search in Google Scholar

Shingfield K.J., Kairenius P., Ärölä A., Paillard D., Muetzel S., Ahvenjärvi S., Vanhatalo A., Huhtanen P., Toivonen V., Griinari J.M. (2012). Dietary fish oil supplements modify ruminal biohydrogenation, alter the flow of fatty acids at the omasum, and induce changes in the ruminal Butyrivibrio population in lactating cows. J. Nutr., 142: 1437-1448.Search in Google Scholar

Sun Y.Z., Mao S.Y., Yao W., Zhu W.Y. (2008). DGGEand 16Sr DNAanalysis revealsahighly diverse and rapidly colonising bacterial community on different substrates in the rumen of goats. Animal, 2: 391-398.Search in Google Scholar

Suzuki M.T., Taylor L.T., De Long E.F. (2000). Quantitative analysis of small-subunit r RNA genes in mixed microbial populations via 5'-nuclease assays. Appl. Environ. Microbiol., 66: 4605-4614.Search in Google Scholar

Toral P.G., Shingfield K.J., Hervás G., Toivonen V., Frutos P. (2010). Effect of fish oil and sunflower oil on rumen fermentation characteristics and fatty acid composition of digesta in ewes fedahigh concentrate diet. J. Dairy Sci., 93: 4804-4817.Search in Google Scholar

Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.Search in Google Scholar

Wanapat M., Cherdthong A. (2009). Use of real-time PCRtechnique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo. Curr. Microbiol., 58: 294-299.Search in Google Scholar

Wąsowska I., Maia M.R., Niedzwiedzka K.M., Czauderna M., Ribeiro J.M., Dev- illard E., Shingfield K.J., Wallace R.J. (2006). Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br. J. Nutr., 95: 1199-1211.Search in Google Scholar

Weatherburn M. (1967). Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 39: 971-974.Search in Google Scholar

Yang C.J., Mao S.Y., Long L.M., Zhu W.Y. (2012). Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios. Animal, 6: 1788-1794.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo