Otwarty dostęp

19. Improving the Prediction of Methane Production Determined by in Vitro Gas Production Technique for Ruminants


Zacytuj

Allison M.J. (1970). Nitrogen metabolism of ruminal microorganisms. In: Physiology of digestion and metabolism in the ruminant, Phillipson A.T., Annison E.F., Armstrong D.G., Balch C.C., Hardy R.N., Hobson P. N., Keynes F.R.S.R.D. (eds). Oriel Press Ltd., London, UK, pp. 456-473.Search in Google Scholar

AOAC (1995). Official methods of analysis (16th ed.). Association of Official Analytical Chemists. Arlington. VA.Search in Google Scholar

Bannink A., Kogut J., Dijkstra J., France J., Kebreab E., Van Vuuren A.M., Tam- minga S. (2006). Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J. Theor. Biol., 238: 36-51.Search in Google Scholar

Bhatta R., Tajima K., Takusari N., Higuchi K., Enishi O., Kurihara M. (2007). Comparison of in vivo and in vitro techniques for methane production from ruminant diets. Asian-Aust. J. Anim. Sci., 20: 1049-1056.Search in Google Scholar

Blümmel M., Givens D.I., Moss A.R. (2005). Comparison of methane produced by straw fed sheep in open-circuit respiration with methane predicted by fermentation characteristics measured by an in vitro gas procedure. Anim. Feed Sci. Technol., 123-124: 379-390.Search in Google Scholar

Brown V.E., Rymer C., Agnew R.E., Givens D.I. (2002). Relationship between in vitro gas production profiles of forages and in vivo rumen fermentation patterns in beef steers fed those forages. Anim. Feed Sci. Technol., 98: 13-24.Search in Google Scholar

Chaves A.V., Thompson L.C., Iwaasa A.D., Scott S.L., Olson M.E., Benchaar C., Veira D.M., Mc Allister T.A. (2006). Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J. Anim. Sci., 86: 409-418.Search in Google Scholar

Chen C.N., Lee T.T., Yu B. (2013). Comparison of the dietary fiber digestibility and fermentability of feedstuffs determined by conventional methods and in vitro gas production technique in pigs. Acta. Agr. Scand. A - Anim. Sci., 63: 201-207.Search in Google Scholar

Christophersen C.T., Wright A.D.G., Vercoe P.E. (2008). In vitro methane emission and acetate:propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. J. Anim. Sci., 86: 384-389.Search in Google Scholar

Cone J.W., Van Gelder A.H., Visscher G.J.W., Oudshoorn L. (1996). Influence of rumen fluid and substrate concentration on fermentation kinetics measured withafully automated time related gas production apparatus. Anim. Feed Sci. Technol., 61: 113-128.Search in Google Scholar

DePeters E.J., Fadel J.G., Arosemena A. (1997). Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstuffs. Anim. Feed Sci. Technol., 67: 127-140.Search in Google Scholar

Dijkstra J., Kebreab E., Bannink A., France J., López S. (2005). Application of the gas production technique to feed evaluation systems for ruminants. Anim. Feed Sci. Technol., 123-124: 561-578.Search in Google Scholar

Dijkstra J., Ellis J.L., Kebreab E., Strathe A.B., Lopez S., France J., Bannink A. (2012). Ruminal p Hregulation and nutritional consequences of low p H. Anim. Feed Sci. Technol., 172: 22-23.Search in Google Scholar

Dohme F., Machmueller A., Wasserfallen A., Kreuzer M. (2001). Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol., 32: 47-51.Search in Google Scholar

Estermann B.L., Sutter F., Schlegel P.O., Erdin D., Wettsten H.R., Kreuzer M. (2002). Effect of calf age and dam breed on intake, energy expenditure, and excretion of nitrogen, phosphorus and methane of beef cows with calves. J. Anim. Sci., 80: 1124-1134.Search in Google Scholar

Getachew G., Robinson P.H., De Peters E.J., Taylor S.J. (2004). Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol., 111: 57-71.Search in Google Scholar

Getachew G., Robinson P.H., De Peters E.J., Taylor S.J., Gisi D.D., Higgginbo- tham G.E., Riordan T.J. (2005). Methane production from commercial dairy rations estimated using an in vitro gas technique. Anim. Feed Sci. Technol., 123-124: 391-403.Search in Google Scholar

Hatew B., Podesta S.C., Van Laar H., Pellikaan W.F., Ellis J.L., Dijkstra J., Ban- nink A. (2015). Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows. J. Dairy Sci., 98: 486-499.Search in Google Scholar

Hindrichsen I.K., Wettstein H.-R., Machmüller A., Soliva C.R., Bach Knud - sen K.E., Madsen J., Kreuzer M. (2004). Effects of feed carbohydrates with contrasting properties on rumen fermentation and methane release in vitro. Can. J. Anim. Sci., 84: 265-276.Search in Google Scholar

Hristov A.N., Oh J., Firkins J. L., Dijkstra J., Kebreab E., Waghorn G., Mak- kar H.P.S., Adesogan A.T., Yang W., Lee C., Gerber P.J., Henderson B., Tricar - ico J.M. (2013). Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci., 91: 5045-5069.Search in Google Scholar

Janssen P.H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol., 160: 1-22.Search in Google Scholar

Jentsch W., Schweigel M., Weissbach F., Scholze H., Pittroff W., Derno M. (2007). Methane production in cattle calculated by the nutrient composition of the diet. Arch. Anim. Nutr., 61: 10-19.Search in Google Scholar

Johnson K.A., Johnson D.E. (1995). Methane emissions from cattle. J. Anim. Sci., 73: 2483-2492.Search in Google Scholar

Kim S.H., Mamuad L.L., Jeong C.D., Choi Y.J., Lee S.S., Ko J.Y., Lee S.S. (2013). In vitro evaluation of different feeds for their potential to generate methane and change methanogen diversity. Asian-Aust. J. Anim. Sci., 26: 1698-1707.Search in Google Scholar

Lee H.J., Lee S.C., Kim J.D., Oh Y.G., Kim B.K., Kim C.W., Kim K.J. (2003). Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci., 16: 1143-1150.Search in Google Scholar

Lovett D.K., Bortolozzo A., Conaghan P., O’ Kiely P., O’ Mara F.P. (2004). In vitro total and methane gas production as influenced by rate of nitrogen application, season of harvest and perennial ryegrass cultivar. Grass Forage Sci., 59: 227-23210.1111/j.1365-2494.2004.00421.xSearch in Google Scholar

Machmüller A., Ossowski D.A., Wanner M., Kreuzer M. (1998). Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol., 71: 117-130.Search in Google Scholar

McAllister T.A., Okine E.K., Mathison G.W., Cheng K.J. (1996). Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci., 76: 231-243.Search in Google Scholar

Meale S.J., Chaves A.V., Baah J., Mc Allister T.A. (2012). Methane production of different forages in in vitro ruminal fermentation. Asian-Aust. J. Anim. Sci., 25: 86-91.Search in Google Scholar

Navarro-Villa A., O’Brien M., López S., Boland T.M., O’Kiely P. (2011). In vitro rumen methane output of red clover and perennial ryegrass assayed using the gas production technique (GPT). Anim. Feed Sci. Technol., 168: 152-164.Search in Google Scholar

NRC (2001). Nutrient Requirements of Dairy Cattle. National Academy Press. Washington, D.C.Search in Google Scholar

Pellikaan W.F., Hendriks W.H., Uwimana G., Bongers L.J.G.M., Becker P.M., Co -ne J.W. (2011). Anovel method to determine simultaneously methane production during in vitro gas production using fully automated equipment. Anim. Feed Sci. Technol., 168: 196-205.Search in Google Scholar

Ramin M., Huhtanen P. (2013). Development of equations for predicting methane emissions from ruminants. J. Dairy Sci., 96: 2476-2493.Search in Google Scholar

Santoso B., Hariadi B.T. (2009). Evaluation of nutritive value and in vitro methane production of feedstuffs from agricultural and food industry by-products. J. Indones. Trop. Anim. Agric., 34: 189-195.Search in Google Scholar

Singer M.D., Robinson P.H., Salem A.Z.M., De Peters E.J. (2008). Impacts of rumen fluid modified by feeding Yucca schidigera to lactating dairy cows on in vitro gas production of 11 common dairy feedstuffs, as well as animal performance. Anim. Feed Sci. Technol., 146: 242-258.Search in Google Scholar

Singh S., Kushwaha B.P., Nag S.K., Mishra A.K., Singh A., Anele U.Y. (2012). In vitro ruminal fermentation, protein and carbohydrate fractionation, methane production and prediction of twelve commonly used Indian green forages. Anim. Feed Sci. Technol., 178: 2-11.Search in Google Scholar

Soliva C.R., Hindrichsen I.K., Meile L., Kreuzer M., Machmüller A. (2003). Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol., 37: 35-39.Search in Google Scholar

Takahashi J. (2001). Nutritional manipulation of methanogenesis in ruminants. Asian-Aust. J. Anim. Sci., 14: 131-135.Search in Google Scholar

Van Soest P.J., Robertson J.B., Lewis B.A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.Search in Google Scholar

Waghorn G.C., Hegarty R.S. (2011). Lowering ruminant methane emissions through improved feed conversion efficiency. Anim. Feed Sci. Technol., 166-167: 291-301.Search in Google Scholar

Wilkerson V.A., Casper D.P., Mertens D.R. (1995). The prediction of methane production of Holstein cows by several equations. J. Dairy Sci., 78: 2402-2414.Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine