1. bookTom 16 (2016): Zeszyt 1 (January 2016)
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Otwarty dostęp

Nanoparticles as a Tool for Transfection and Transgenesis – a Review

Data publikacji: 23 Jan 2016
Tom & Zeszyt: Tom 16 (2016) - Zeszyt 1 (January 2016)
Zakres stron: 53 - 64
Otrzymano: 09 Mar 2015
Przyjęty: 28 Oct 2015
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Ahmad A., Ranjan S., Zhang W., Zou J., Pyykkö I., Kinnunen P. (2015). Novel endosomolytic peptides for enhancing gene delivery in nanoparticles. Biochim. Biophys., 1848: 544-553.Search in Google Scholar

An H., Jin B. (2012). Prospects of nanoparticle-DNAbinding and its implications in medical biotechnology. Biotechnol. Adv., 30: 1721-1732.Search in Google Scholar

Austin L., Mackey M., Dreaden E., El-Sayed M. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol., 88: 1391-1417.Search in Google Scholar

Bahrami A., Raatz M., Agudo- Canalejo J., Michel R., Curtis E., Hall C., Gradzielski M., Lipowsky R., Weikl T. (2014). Wrapping of nanoparticles by membranes. Adv. Colloid Interface Sci., 208: 214-224.Search in Google Scholar

Barkalina N., Charalambous C., Jones C., Coward K. (2014). Nanotechnology in reproductive medicine: Emerging applications of nanomaterials. Nanomedicine, 10: 921-938.Search in Google Scholar

Barkalina N., Jones C., Wood M., Coward K. (2015). Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature. Hum. Reprod. Update, 21: 627-639.Search in Google Scholar

Bosman S., Nieto S., Patton W., Jacobson J., Corselli J., Chan P. (2005). Development of mammalian embryos exposed to mixed-size nanoparticles. Clin. Exp. Obstet. Gynecol., 32: 222-224.Search in Google Scholar

Breunig M., Lungwitz U., Liebl R., Goepferich A. (2007). Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl. Acad. Sci. USA, 104: 14454-14459.Search in Google Scholar

Campos V.,de Leon P., Komninou E., Dellagostin O., Deschamps J., Seixas F., Collares T. (2011). Nano SMGT: Transgene transmission into bovine embryos using hallosite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology, 76: 1552-1560.Search in Google Scholar

Caracciolo G., Pozzi D., Capriotti A., Marianecci C., Carafa M., Marchini C., Montani M., Amici A., Amenitsch H., Digman M., Gratton E., Sanchez S., Lagana A. (2011). Factors determining the superior performance of lipid/DNA/protamine nanoparticles over lipoplexes. J. Med. Chem., 54: 4160-4171.Search in Google Scholar

Carmona- Ribeiro A. (2010). Biomimetic nanoparticles: preparation, characterization and biomedical applications. Int. J. Nanomedicine, 5: 249-259.Search in Google Scholar

Cortesi R., Campioni M., Ravani L., Drechsler M., Pinotti M., Esposito E. (2014). Cationic lipid nanosystems as carriers for nucleic acids. N. Biotechnol., 31: 44-54.Search in Google Scholar

Delgado D.,de Pozo-Rodriguez A., Solinis M., Rodriguez- Gascon A. (2011). Understanding the mechanism of protamine in solid lipid nanoparticle based lipofection: the importance of the entry pathway. Eur. J. Pharm. Biopharm., 79: 495-502.Search in Google Scholar

Eghbalsaied S., Ghaedi K., Laible G., Hosseini S., Forouzanfar M., Hajian M., Oback F., Nasr-Esfahani M., Oback B. (2013). Exposure to DNAis insufficient for in vitro transgenesis of live bovine sperm and embryos. Reproduction, 145: 97-108.Search in Google Scholar

Ekser B., Klein E., He J., Stolz D., Echeverri G., Long C., Lin C., Ezzelarab M., Hara H., Veroux M., Ayares D., Cooper D.K., Gridelli B. (2012). Genetically-engineered pig-to-baboon liver xenotransplantation: histopathology of xenografts and native organs. PLo S One, 7: e29720.Search in Google Scholar

Ema M., Kobayashi N., Naya M., Hanai S., Nakanishi J. (2010). Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod. Toxicol., 30: 343-352.Search in Google Scholar

Gandolfi F. (2000). Sperm-mediated transgenesis. Theriogenology, 53: 127-137.Search in Google Scholar

Gemeinhart R., Luo D., Saltzman W. (2005). Cellular fate ofamodular DNAdelivery system mediated by silica nanoparticles. Biotechnol. Prog., 21: 532-537.Search in Google Scholar

Ghosh P., Han G., De M., Kim C., Rotello V. (2008). Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 60: 1307-1315.Search in Google Scholar

Golovan S., Meidinger R., Ajakaiye A., Cottrill M., Wiederkehr M., Barney D., Plante C., Pollard J., Fan M., Hayes M., Laursen J., Hjorth J., Hacker R., Phil - lips J., Forsberg C. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol., 19: 741-745.Search in Google Scholar

Green J., Zhou B., Mitalipova M., Beard C., Langer R., Jaenisch R., Anderson D. (2008). Nanoparticles for gene transfer to human embryonic stem cell colonies. Nano Lett., 8: 3126-3130.Search in Google Scholar

Grześkowiak B., Sánchez- Antequera Y., Hammerschmid E., Döblinger M., Eberbeck D., Woźniak A., Słomski R., Plank C., Mykhaylyk O. (2015). Nanomagnetic activation asaway to control the efficacy of nucleic acid delivery. Pharm. Res., 32: 103-121.Search in Google Scholar

Hammer R., Pursel V., Rexroad C. Jr, Wall R., Bolt D., Ebert K., Palmiter R., Brin - ster R. (1986). Production of transgenic rabbits, sheep and pigs by microinjection. J. Anim. Sci., 63: 269-278.Search in Google Scholar

Hart S. (2010). Multifunctional nanocomplexes for gene transfer and gene theraphy. Cell Biol. Toxicol., 26: 69-81.Search in Google Scholar

Houdebine L. (2009). Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infec. Dis., 32: 107-121.Search in Google Scholar

Huang J., Liu Ch., Yen K., Kang P., Sadhasivam S., Lin F. (2012). Cholaminchloride hydrochloride-cationized gelatin/calcium phosphate nanoparticles as gene carriers for transgenic chicken production. Process Biochem., 47: 1919-1925.Search in Google Scholar

Jiang Z., Sun C., Yin Z., Zhou F., Ge L., Liu X., Kong F. (2012). Comparison of two kinds of nanomedicine for targeted gene therapy: premodified or postmodified gene delivery systems. Int. J. Nanomedicine, 7: 2019-2031.Search in Google Scholar

Jura J., Smorąg Z., Słomski R., Lipiński D., Gajda B. (2007). Factors affecting the production of potential transgenic pigs by DNAmicroinjection;asix-year retrospective study. J. Anim. Feed Sci., 12: 636-645.Search in Google Scholar

Kami D., Takeda S., Itakura Y., Watanabe M., Toyoda M. (2011). Application of magnetic nanoparticles to gene delivery. Int. J. Mol. Sci., 12: 3705-3722.Search in Google Scholar

Kang L., Gao Z., Huang W., Jin M., Wang Q. (2015). Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharma. Sin. B, 5: 169-175.Search in Google Scholar

Keefer C. (2004). Production of bioproducts through the use of transgenic animal models. Anim. Reprod. Sci., 82-83: 5-12.Search in Google Scholar

Laible G. (2009). Enhancing livestock through genetic engineering - recent advances and future prospects. Comp. Immunol. Microbiol. Infec. Dis., 32: 123-137.Search in Google Scholar

Laible G., Wei J., Wagner S. (2015). Improving livestock for agriculture - technological progress from random transgenesis to precision genome editing heraldsanew era. Biotechnol. J., 10: 109-120.Search in Google Scholar

Li Y., Wen G., Wang D., Zhang X., Lu Y., Wang J., Zhong L., Cai H., Zhang X., Wang Y. (2014). Acomplementary strategy for enhancement of nanoparticle intracellular uptake. Pharm. Res., 31: 2054-2064.Search in Google Scholar

Lipiński D., Zeyland J., Szalata M., Plawski A., Jarmuz M., Jura J., Korcz A., Smorąg Z., Peinkowski M., Słomski R. (2012). Expression of human growth hormone in the milk of transgenic rabbits with transgene mapped to the telomere region of chromosome 7q. J. Appl. Genet., 53: 435-442.Search in Google Scholar

Maga E., Murray J. (2010). Welfare applications of genetically engineered animals for use in agriculture. J. Anim Sci., 88: 1588-1591.Search in Google Scholar

Marshall K., Hurley W., Shanks R., Wheeler M. (2006). Effects of suckling intensity on milk yield and piglet growth from lactation-enhanced gilts. J. Anim. Sci., 84: 2346-2351.Search in Google Scholar

McBain S., Yiu H., Dobson J. (2008). Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine, 3: 169-180.Search in Google Scholar

Moura R., Melo L., Freitas V. (2011). Production of recombinant proteins in milk of transgenic and non-transgenic goats. Braz. Arch. Biol. Techn., 54: 927-938.Search in Google Scholar

Nam Y., Maclean N., Hwang G., Kim D. (2013). Autotransgenic and allotransgenic manipulation of growth traits in fish for aquaculture: Areview. J. Fish Biol., 72: 1-26Search in Google Scholar

Nel A., Xia T., Mandler L., Li N. (2006). Toxic potential of materials at the nanolevel. Science, 311: 622-627.Search in Google Scholar

Nitta S., Numata K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci., 14: 1629-1654.Search in Google Scholar

Perrier V., Kaneko K., Safar J., Vergara J., Tremblay P., De Armond S., Cohen F.,Prusiner S., Wallace A. (2002). Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl. Acad. Sci. USA, 99: 13079-13084.Search in Google Scholar

Pfeifer A., Zimmermann K., Plank C. (2012). Magnetic nanoparticles for biomedical applications. Pharm. Res., 29: 1161-1164.Search in Google Scholar

Plank C., Schillinger U., Scherer F., Bergemann C., Remy J., Krotz F., Anto n M., Lausier J., Rosenecker J. (2003). The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem., 384: 737-747.Search in Google Scholar

Pozzi D., Marchini C., Cardarelli F., Salomone F., Coppola S., Montani M., Za - baleta M., Digman M., Gratton E., Colapicchioni V., Caracciolo G. (2014). Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: interplay between nanostructure and composition. Biochim. Biophys. Acta, 1838: 957-967.Search in Google Scholar

Prabha S., Zhou W., Panyam J., Labhasetwar V. (2002). Size-dependency of nanoparticlemediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm., 244: 105-115.Search in Google Scholar

Rothschild M., Plastow G. (2014). Applications of genomics to improve livestock in the developing world. Livest. Sci., 166: 76-83.Search in Google Scholar

Sauer U., Aumann A., Ma-Hock L., Landsiedel R., Wohlleben W. (2015). Influence of dispersive agent on nanomaterial agglomeration and implications for biological effects in vivo or in vitro. Toxicol. In Vitro, 29: 182-186.Search in Google Scholar

Severino P., Szymanski M., Favaro M., Azzoni A., Chaud M., Santana M., Sil- va A., Souto E. (2015). Development and characterization of cationic lipid nanocarrier as nonviral vector for gene delivery. Eur. J. Pharm. Sci., 66: 78-82.Search in Google Scholar

Slowing I., Vivero-Escoto J., Wu C., Lin V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 60: 1278-1288.Search in Google Scholar

Smith K., Corrado S. (2005). Sperm-mediated transfer: applications and implications. Bio Essays, 27: 551-562.Search in Google Scholar

Smorąg Z., Słomski R., Cierpka L. (2013). Biotechnological and medical aspects of xenotransplantation (in Polish). Ośrodek Wydawnictw Naukowych PAN, Poznań, 2nd ed., pp. 73-93.Search in Google Scholar

Song G., Han J. (2011). Avian biomodels for use as pharmaceutical bioreactors and for studying human diseases. Ann. NY Acad. Sci., 1229: 69-75.Search in Google Scholar

Svenson S., Prud’homme R. (2012). Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. Nanostructure Science and Technology. Springer Science+ Business Media, LLC Springer-Verlag, New York, USA, pp. 9-29.10.1007/978-1-4614-2305-8Search in Google Scholar

Tabatt K., Kneuer C., Sametti M., Olbrich K., Muller R., Lehr C., Bakowsky U. (2004). Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J. Control. Release, 97: 321-332.Search in Google Scholar

Taylor U., Garrels W., Barchanski A., Peterson S., Sajti L., Lucas- Hahn A., Gamrad L., Baulain U., Klein S., Kues W., Barcikowski S., Rath D. (2014). Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact preimplantation development. Beilstein J. Nanotechnol., 5: 677-688.Search in Google Scholar

Taylor U., Tiedemann D., Rehbock C., Kues W., Barcikowski S., Rath D. (2015). Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development. Beilstein J. Nanotechnol., 6: 651-664.Search in Google Scholar

Verma V., Gautam S., Palta P., Manik R., Singla S., Chauhan M. (2008). Development ofapronuclear DNAmicroinjection technique for production of green fluorescent protein-expressing bubaline (Bubalus bubalis) embryos. Theriogenology, 69: 655-665.Search in Google Scholar

Wang Y., Zhao S., Bai L., Fan J., Liu E. (2013). Expression system and species used for transgenic animal bioreactors. Bio. Med. Res. Int., 2013: 580463.Search in Google Scholar

Wang J., Yao H., Shi X. (2014 a). Cooperative entry of nanoparticles into the cell. J. Mech. Phys. Solids, 73: 151-165.10.1016/j.jmps.2014.09.006Search in Google Scholar

Wang Y., Cui H., Sun C., Du W., Zhao X., Chen W. (2014 b). Amagnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLo S One, 9(7):e102886.10.1371/journal.pone.0102886410556425048709Search in Google Scholar

Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Che E., Hu L., Zhang Q., Jiang T., Wang S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine, 11: 31 3-327.Search in Google Scholar

Ward K. (2000). Transgene-mediated modifications to animal biochemistry. Trends Biotechnol., 18: 99-102.Search in Google Scholar

Whitelaw C., Lilico S., King T. (2008). Production of transgenic farm animals by viral vectormediated gene transfer. Reprod. Domest. Anim., 43(suppl.2): 355-358.Search in Google Scholar

Yoisungnern T., Choi Y., Han J., Kang M., Das J., Gurunathan S., Kwon D., Cho S., Park C., Chang W., Chang B., Parnpai R., Kim J. (2015). Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci. Rep., 5: 11170.Search in Google Scholar

Zanin H., Hollanda L., Ceragioli H., Ferreira M., Machado D., Lancellotti M., Catharino R., Baranauskas V., Lobo A. (2014). Carbon nanoparticles for gene transfection in eukaryotic cell lines. Mater Sci. Eng. C Mater Biol. Appl., 39: 359-370.Search in Google Scholar

Zhou X., Laroche F., Lemers G., Torraca V., Voscamp P., Lu T., Chu F., Spaik H., Abrahms J., Liu Z. (2012). Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res., 5: 703-709.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo