1. bookTom 16 (2016): Zeszyt 1 (January 2016)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Prediction of Carcass Meat Percentage in Young Pigs Using Linear Regression Models and Artificial Neural Networks

Data publikacji: 23 Jan 2016
Tom & Zeszyt: Tom 16 (2016) - Zeszyt 1 (January 2016)
Zakres stron: 275 - 286
Otrzymano: 23 Jul 2015
Przyjęty: 31 Aug 2015
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Adamczyk K., Molenda K., Szarek J., Skrzyński G. (2005). Prediction of bulls’slaughter value from growth data using artificial neural network. J. Centr. Europ. Agric., 6: 133-142.Search in Google Scholar

Adya M., Collopy F. (1998). How effective are neural networks at forecasting and prediction? A review and evaluation. J. Forecast., l; 481-495.10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-QSearch in Google Scholar

Berg E.P., Engel B.A., Forrest J.C. (1998). Pork carcass composition derived fromaneural network model of electromagnetic scans. J. Anim. Sci., 76: 18-22.Search in Google Scholar

Eckert R., Żak G., Bereta A. (2014). Results of performance tested gilts (in Polish). Report on pig breeding in Poland. Kraków, IZ PIB XXXII: 35-48.Search in Google Scholar

Hervas C., Garrido A., Lucena B., Garcia N., De Pedro E. (1994). Near infrared spectroscopy for classification of Iberian pig carcasses using an artificial neural network. J. Near Infrared Spectrosc., 2: 177-184.Search in Google Scholar

Ichikawa H. (2003). Hierarchy neural networks as applied to pharmaceutical problems. Advanc. Drug Deliv. Rev., 55: 1119-1147.Search in Google Scholar

Klimas R., Klimiene A., Rimkevicius S. (2004). Efficiency of breeding pigs selection according to phenotypic evaluation of meatiness. Vet. Zoot., 27: 79-86.Search in Google Scholar

Kumar U.A. (2005). Comparison of neural networks and regression analysis: Anew insight. Expert Syst. with Applic., 29: 424-430.Search in Google Scholar

Lisiak D., Borzuta K. (2014). The influence of the SEUROPgrade and weight of pig carcasses on lean meat content evaluated using regression equations from 2003 and 2011 (in Polish). Rocz. Nauk. PTZ, 10: 65-75.Search in Google Scholar

Migdał - Najman K., Najman K. (2000). Neural networks, use for forecasting WIG (in Polish). Katedra Statystyki, Wydział Zarządzania, Uniwersytet Gdański, pp. 1-17. http://panda.bg.univ.gda.pl/prezes/WWW_A_moze_sieci_neuronowe.pdfSearch in Google Scholar

Paliwal M., Kumar U.A. (2009). Astudy of academic performance of business school graduates using neural network and statistical techniques. Expert Syst. with Applic., 36: 7865-7872.Search in Google Scholar

Radović Č., Petrović M., Živković B., Radojković D., Parunović N., Brkić N., Delić N. (2013). Heritability, phenotypic and genetic correlations of the growth intensity and meat yield of pigs. Biotech. Anim. Husb., 29: 75-82.Search in Google Scholar

Różycki M., Tyra M. (2010). Methodology for evaluating the value of fattening and slaughter pigs carried out in the stations of performance control slaughter pigs (SKURTCh) (in Polish). Report on pig breeding in Poland. IZ PIB XXVIII: 93-117.Search in Google Scholar

Stricklin W.R.,de Bourcier P., Zhou J.Z., Gonyou H.W. (1998). Artificial pigs in space: using artificial intelligence and artificial life techniques to design animal housing. J. Anim. Sci., 76: 2609-2613.Search in Google Scholar

Subba Narasimha P.N., Arinze B ., Anandarajan M. (2000). The predictive accuracy of artificial neural networks and multiple regression in the case of skewed data: Exploration of some issues. Expert Syst. Applic., 19: 117-123.Search in Google Scholar

Szyndler-Nędza M., Eckert R. (2008). Relationships between live measurements of backfat and longissimus dorsi thickness and fatness as well as muscularity of carcass, ham and loin of boars and gilts (in Polish). Rocz. Nauk. PTZ., 4: 103-113.Search in Google Scholar

Ślipek Z., Francik S., Frączek J. (2003). Methodic aspects of creating ANNmodels in agrophysical research (in Polish). Acta Agrophysica, 2: 231-241.Search in Google Scholar

Xin H. (1999). Assessing swine thermal comfort by image analysis of postural behaviors. J. Anim. Sci., 77: 1-9.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo