Otwarty dostęp

Loss of P16 in Esophageal Adenocarcinoma Detected by Fluorescence in situ Hybridization and Immunohistochemistry

 oraz    | 23 paź 2017

Zacytuj

1. Hur C, Miller M, Kong CY, et al. Trends in esophageal adenocarcinoma incidence and mortality. Cancer. 2013;119:1149-1158.10.1002/cncr.27834Search in Google Scholar

2. Thrift AP, Whiteman DC. The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Ann Oncol. 2012;23:3155-3162.10.1093/annonc/mds181Open DOISearch in Google Scholar

3. Clemons NJ, Phillips WA, Lord RV. Signaling pathways in the molecular pathogenesis of adenocarcinomas of the esophagus and gastroesophageal junction. Cancer Biol Ther. 2013;14:782-795.10.4161/cbt.25362Open DOISearch in Google Scholar

4. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704-707.10.1038/366704a0Search in Google Scholar

5. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.10.1016/S0092-8674(00)81683-9Open DOISearch in Google Scholar

6. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436-440.10.1126/science.8153634Search in Google Scholar

7. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, De-Pinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996;85:27-37.10.1016/S0092-8674(00)81079-XSearch in Google Scholar

8. Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16:1197-1206.10.1200/JCO.1998.16.3.11979508208Search in Google Scholar

9. Romagosa C, Simonetti S, López-Vicente L, et al. p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene. 2011;30:2087-2097.10.1038/onc.2010.61421297668Open DOISearch in Google Scholar

10. Nobori T, Miura K, Wu D, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368:753-756.10.1038/368753a08152487Search in Google Scholar

11. Liu Q, Yan YX, McClure M, Nakagawa H, Fujimura F, Rustgi AK. MTS-1 (CDKN2) tumor suppressor gene deletions are a frequent event in esophagus squamous cancer and pancreatic adenocarcinoma cell lines. Oncogene. 1995;10:619-622.Search in Google Scholar

12. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436-440.10.1126/science.8153634Search in Google Scholar

13. Cairns P, Polascik TJ, Eby Y, et al. Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat Genet. 1995;11:210-212.10.1038/ng1095-210Open DOISearch in Google Scholar

14. Barrett MT, Sanchez CA, Galipeau PC, Neshat K, Emond M, Reid BJ. Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene. 1996;13:1867-1873.Search in Google Scholar

15. González MV, Artímez ML, Rodrigo L, et al. Mutation analysis of the p53, APC, and p16 genes in the Barrett’s oesophagus, dysplasia, and adenocarcinoma. J Clin Pathol. 1997;50:212-217.10.1136/jcp.50.3.212Search in Google Scholar

16. Lu Y, Zhang X, Zhang J. Inhibition of breast tumor cell growth by ectopic expression of p16/INK4A via combined effects of cell cycle arrest, senescence and apoptotic induction, and angiogenesis inhibition. J Cancer. 2012;3:333-344.10.7150/jca.4046Open DOISearch in Google Scholar

17. Hu H, Li Z, Chen J, et al. P16 reactivation induces anoikis and exhibits antitumour potency by downregulating Akt/survivin signalling in hepatocellular carcinoma cells. Gut. 2011;60:710-721.10.1136/gut.2010.220020Open DOISearch in Google Scholar

18. Allay JA, Steiner MS, Zhang Y, Reed CP, Cockroft J, Lu Y. Adenovirus p16 gene therapy for prostate cancer. World J Urol. 2000;18:111-120.10.1007/s003450050182Open DOISearch in Google Scholar

19. Schrump DS, Chen GA, Consuli U, Jin X, Roth JA. Inhibition of esophageal cancer proliferation by adenovirally mediated delivery of p16INK4. Cancer Gene Ther. 1996;3:357-364.Search in Google Scholar

20. Xie SH, Lagergren J. A global assessment of the male predominance in esophageal adenocarcinoma. Oncotarget. 2016;7:38876-38883.10.18632/oncotarget.9113Search in Google Scholar

21. Bollschweiler E, Wolfgarten E, Gutschow C, Hölscher AH. Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer. 2001;92:549-555.10.1002/1097-0142(20010801)92:3<549::AID-CNCR1354>3.0.CO;2-LOpen DOISearch in Google Scholar

22. Lagergren J, Lagergren P. Recent developments in esophageal adenocarcinoma. CA Cancer J Clin. 2013;63:232-248.10.3322/caac.21185Open DOISearch in Google Scholar

23. Duraiyan J, Govindarajan R, Kaliyappan K, Palanisamy M. Applications of immunohistochemistry. J Pharm Bioallied Sci. 2012;4(Suppl 2):S307-9.10.4103/0975-7406.100281Search in Google Scholar

24. Le Beau MM. Fluorescence in situ hybridization in cancer diagnosis. Important Adv Oncol. 1993;29-45.Search in Google Scholar

25. Hu L, Ru K, Zhang L, et al. Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark Res. 2014;2:3.10.1186/2050-7771-2-3Search in Google Scholar

26. Trask BJ. Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 1991;7:149-154.10.1016/0168-9525(91)90378-4Open DOISearch in Google Scholar

27. Waters JJ, Barlow AL, Gould CP. Demystified ... FISH. Mol Pathol. 1998;51:62-70.10.1136/mp.51.2.623956129713588Search in Google Scholar

28. Langer R, Von Rahden BH, Nahrig J, et al. Prognostic significance of expression patterns of c-erbB-2, p53, p16INK4A, p27KIP1, cyclin D1 and epidermal growth factor receptor in oesophageal adenocarcinoma: a tissue microarray study. J Clin Pathol. 2006;59:631-634.10.1136/jcp.2005.034298186040116731604Search in Google Scholar

29. Hardie LJ, Darnton SJ, Wallis YL, et al. p16 expression in Barrett’s esophagus and esophageal adenocarcinoma: association with genetic and epigenetic alterations. Cancer Lett. 2005;217:221-230.10.1016/j.canlet.2004.06.02515617840Search in Google Scholar

30. Doak SH, Jenkins GJS, Parry EM, et al. Characterisation of p53 status at the gene, chromosomal and protein levels in oesophageal adenocarcinoma. Br J Cancer. 2003;89:1729-1735.10.1038/sj.bjc.6601323239441414583777Search in Google Scholar

31. Zordan A. Fluorescence in situ hybridization on formalin-fixed, paraffin-embedded tissue sections. Methods Mol Biol. 2011;730:189-202.10.1007/978-1-61779-074-4_1421431643Search in Google Scholar

32. Brankley SM, Wang KK, Harwood AR, et al. The development of a fluorescence in situ hybridization assay for the detection of dysplasia and adenocarcinoma in Barrett’s esophagus. J Mol Diagn. 2006;8:260-267.10.2353/jmoldx.2006.050118186758216645214Search in Google Scholar

33. Fahmy M, Skacel M, Gramlich TL, et al. Chromosomal gains and genomic loss of p53 and p16 genes in Barrett’s esophagus detected by fluorescence in situ hybridization of cytology specimens. Mod Pathol. 2004;17:588-596.10.1038/modpathol.380008815017433Search in Google Scholar

34. Doak SH, Jenkins GJ, Parry EM, et al. Chromosome 4 hyperploidy represents an early genetic aberration in premalignant Barrett’s oesophagus. Gut. 2003;52:623-628.10.1136/gut.52.5.623177363712692043Search in Google Scholar

35. Brankley SM, Fritcher EG, Smyrk TC, et al. Fluorescence in situ hybridization mapping of esophagectomy specimens from patients with Barrett’s esophagus with high-grade dysplasia or adenocarcinoma. Hum Pathol. 2012;43:172-179.10.1016/j.humpath.2011.04.018Open DOISearch in Google Scholar

36. Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Reid BJ. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res. 2004;64:3414-3127.10.1158/0008-5472.CAN-03-3249Open DOISearch in Google Scholar

37. Wang JS, Guo M, Montgomery E, et al. DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett’s esophagus. Am J Gastroenterol. 2009;104:2153-2160.10.1038/ajg.2009.300Search in Google Scholar

38. Klump B, Hsieh CJ, Holzmann K, Gregor M, Porschen R. Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology. 1998;115:1381-1386.10.1016/S0016-5085(98)70016-2Search in Google Scholar

39. Wong DJ, Barrett MT, Stöger R, Emond MJ, Reid BJ. p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res. 1997;57:2619-2622.Search in Google Scholar

eISSN:
0324-1750
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Basic Medical Science, Immunology, Clinical Medicine, other