Otwarty dostęp

Application of Finite Element Method for Analysis of Nanostructures


Zacytuj

1. Brenner D.W. (1990), Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Physical Review B, Vol. 42, 9458.Search in Google Scholar

2. Cornell W.D., Cieplak P., Bayly C.I. (1995), A second generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules, Journal of American Chemical Society, 117, 5179-5197.10.1021/ja00124a002Search in Google Scholar

3. Hartmann M.A., Todt M., Rammerstorfer F.G., Fisher F.D., Paris O. (2013), Elastic properties of graphene obtained by computational mechanical tests, Europhysics Letters, 103, 68004-p1-68004-p6.10.1209/0295-5075/103/68004Search in Google Scholar

4. Hemmasizadeh A., Mahzoon M., Hadi E., Khandan R. (2008), A method for developing the equivalent continuum model of a single layer graphene sheet, Thin Solid Films, 516, 7636-7640.10.1016/j.tsf.2008.05.040Search in Google Scholar

5. Hosseini K.S.A., Moshrefzadeh S.H. (2013), Mechanical properties of double-layered graphene sheets, Computational Materials Science, 69, 335-343.10.1016/j.commatsci.2012.11.027Search in Google Scholar

6. Lee C., Wei X., Kysar J.W., Hone J. (2008), Measurement of the elastic properties and intrisic strength of monolayer graphene, Science, 321, 385-388.10.1126/science.1157996Search in Google Scholar

7. Li Ch., Chou T.W. (2003), A structural mechanics approach for the analysis of carbon nanotube, International Journal of Solids and Structures, 40, 2487-2499.10.1016/S0020-7683(03)00056-8Search in Google Scholar

8. Machida K. (1999), Principles of Molecular Mechanics, Kodansha and John Wiley & Sons Co-publication, Tokyo.Search in Google Scholar

9. Marenić E., Ibrahimbegovic A., Sorić J., Guidault P.A. (2013), Homogenized elastic properties of graphene for small deformations, Materials, 6, 3764-3782.10.3390/ma6093764545266028788305Search in Google Scholar

10. Mayo S.L., Olafson B.D., Goddard W.A. (1990), Dreiding–a generic force-field for molecular simulations, Journal of Physical Chemistry, 94, 8897–8909.10.1021/j100389a010Search in Google Scholar

11. Meo M., Rossi M. (2006), Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling, Composite Science and Technology, 66, 1597-1605.10.1016/j.compscitech.2005.11.015Search in Google Scholar

12. Rafiee R., Heidarhaei M. (2012), Investigation of chirality and diameter effects on the Young's modulus of carbon nanotubes using non-linear potentials, Composite Structures, 94, 2460-2464.10.1016/j.compstruct.2012.03.010Search in Google Scholar

13. Rappe A.K., Casewit C.J., Colwell K.S. (1992), A full periodictable force-field for molecular mechanics and molecular dynamics simulations, Journal of American Chemical Society, 114, 10024-10035.10.1021/ja00051a040Search in Google Scholar

14. Ru C.Q. (2000), Effective bending stiffness of carbon nanotubes, Physical Review B, 62, 9973-9976.10.1103/PhysRevB.62.9973Search in Google Scholar

15. Saito S., Dresselhaus D., Dresselhaus M.S. (1998), Physical Properties of Carbon Nanotubes, Imperical College Press, London.10.1142/p080Search in Google Scholar

16. Sakhaee-Pour A. (2009), Elastic properties of single-layered graphene sheet, Solid State Communications, 149, 91-95.10.1016/j.ssc.2008.09.050Search in Google Scholar

17. Scarapa F., Adhikari S., Srikantha P. (2009), Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology, 20, 065709.10.1088/0957-4484/20/6/06570919417403Search in Google Scholar

18. Shokrieh M.M, Rafiee R. (2010) Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Materials & Design, 31, 790-795.10.1016/j.matdes.2009.07.058Search in Google Scholar

19. Thostenson E.T., Chunyu L., Chou T.W. (2005), Nanocomposites in context, Composite Science and Technology, 65, 491-516.10.1016/j.compscitech.2004.11.003Search in Google Scholar

20. Tsai J.L., Tu J.F. (2010), Characterizing mechanical properties of graphite using molecular dynamics simulation, Materials & Design, 31, 194-199.10.1016/j.matdes.2009.06.032Search in Google Scholar

21. Tserpes K.I., Papanikos P. (2005), Finite element modelling of single-walled carbon nanotubes, Composites Part B, 36, 468-477.10.1016/j.compositesb.2004.10.003Search in Google Scholar