Otwarty dostęp

Structure Analysis and Diversity of Bacterial Community and their Resistance Determinants in a Nickel-Contaminated Soil in Southwest Slovakia


Zacytuj

Bamborough L. & Cummings S. P. 2009. The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biol. Fertil. Soils 45: 273-280.10.1007/s00374-008-0323-1Search in Google Scholar

Bohuš P. & Klinda J. 2010. Environmentálna regionalizácia Slovenskej republiky. Bratislava: MŽP SR, Banská Bystrica, SAŽP, pp. 9-21. (in Slovak)Search in Google Scholar

Bollmann A., Lewis K. & Epstein S. S. 2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol. 73: 6386-6390.10.1128/AEM.01309-07Search in Google Scholar

Brim H., Heyndrickx M., de Vos P., Wilmotte A., Springael D., Schlegel H. G. & Mergeay M. 1999. Amplified rDNA restriction analysis and further genotypic characterisation of metalresistant soil bacteria and related facultative hydrogenotrophs. Syst. Appl. Microbiol. 22: 258-268.10.1016/S0723-2020(99)80073-3Search in Google Scholar

Cho J., Vergin K., Morris R. & Giovannoni S. 2004. Lentisphaera araneosa gen. nov., sp. nov, a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ Microbiol 6: 611-621.10.1111/j.1462-2920.2004.00614.x15142250Search in Google Scholar

Ferrari B. C., Binnerup S. J. & Gillings M. 2005. Microcolony cultivation on a soil substrate membrane system select for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71: 8714-8720.10.1128/AEM.71.12.8714-8720.2005131731716332866Search in Google Scholar

Frey B., Stemmer M., Widmer F., Luster J. C. & Sperisen C. 2006. Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biol. Biochem. 38: 1745-1756.10.1016/j.soilbio.2005.11.032Search in Google Scholar

Harichová J., Karelová E., Chovanová K., Stojnev T., Prokšová M., Brindza J., Brindza P., Tóth D., Pangallo D. & Ferianc P. 2006. Comparison of culturable Gram-negative bacterial community structures in the rhizosphere of three fruit plants. Biologia (Bratislava) 61: 663-670.10.2478/s11756-006-0138-1Search in Google Scholar

Harichová J., Karelová E., Pangallo D. & Ferianc P. 2012. Structure analysis of bacterial community and their heavy-metal resistance determinants in the heavy-metal-contaminated soil sample. Biologia (Bratislava) 67: 1038-1048.10.2478/s11756-012-0123-9Search in Google Scholar

Hohn M. W., Stadler P., Wu Q. L. & Pocki M. 2004. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J. Microbiol. Methods 57: 379-390.10.1016/j.mimet.2004.02.00415134885Search in Google Scholar

Hussein H., Farag S. & Moawad H. 2003. Isolation and characterization of Pseudomonas resistance to heavy metals contaminants. Arab. J. Biotechnol. 1: 13-22.Search in Google Scholar

Iyaka A. Y. 2011. Nickel in soils: A review of its distribution and impacts. Sci. Res. Essays. 6: 6774-6777.10.5897/SREX11.035Search in Google Scholar

Kaeberlein T., Lewis K. & Epstein S. S. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296: 1127-1129.10.1126/science.1070633Search in Google Scholar

Karelová E., Harichová J. & Ferianc P. 2010. Štruktúra a diverzita kultivovateľnej zložky bakteriálneho spoločenstva v pôde znečistenej ťažkými kovmi. Acta Environmentalica Universitatis Comenianae (Bratislava) 18: 79-91.Search in Google Scholar

Karelová E., Harichová J., Stojnev T., Pangallo D. & Ferianc P. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. Biologia (Bratislava) 66: 18-26.10.2478/s11756-010-0145-0Search in Google Scholar

Keller M. & Zengler K. 2004. Tapping into microbial diversity. Nat. Rev. Microbiol. 2: 141-150.10.1038/nrmicro819Search in Google Scholar

Keramati P., Hoodaji M. & Tahmourespour A. 2011. Multimetal resistance study of bacteria highly resistant to mercury isolated from dental clinic effluent. Afr. J. Microbiol. Res. 5: 831-837.10.5897/AJMR10.860Search in Google Scholar

Koepke B., Wilms R., Engelen B., Cypionka H. & Sass H. 2005. Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71: 7819-7830.10.1128/AEM.71.12.7819-7830.2005Search in Google Scholar

Lane D. J. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E., Goodfellow M. (eds), Nucleic acid techniques in bacterial systematics, John Wiley & Sons, New York, pp. 115-148.Search in Google Scholar

Mason O. U., Hazen T. C., Sharon Borglin S., Chain P. S. G., Dubinsky E. A., Fortney J. L., Han J., Holman H.-Y. N., Hultman J., Lamendella R., Mackelprang R., Malfatti S., Tom L. M., Tringe S. G., Woyke T., Zhou J., Rubin E. M. & Jansson J. K. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 6: 1715-1727.10.1038/ismej.2012.59Search in Google Scholar

Mergeay M., Monchy S., Vallaeys T., Auquier V., Benotmane A., Bertin P., Taghavi S., Dunn J., Van Der Lelie D. & Wattiez R. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385-410.10.1016/S0168-6445(03)00045-7Search in Google Scholar

Nešťák L., Bejda M., Bezecný M., Hajdú Z. & Chmelo S. 2007. Územný plán mesta Sereď zmeny a doplnky 9c. 02/2007, časť C-Komplexná charakteristika a hodnotenie vplyvov na životné prostredie vrátane zdravia, pp. 27-79. (in Slovak)Search in Google Scholar

Nies D. H. 1999. Microbial heavy metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750.10.1007/s002530051457Search in Google Scholar

Nies D. H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313-339.10.1016/S0168-6445(03)00048-2Search in Google Scholar

Palleroni N. J. 1997. Prokaryotic diversity and the importance of culturing. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 72: 3-19.10.1023/A:1000394109961Search in Google Scholar

Remenár M., Karelová E., Harichová J., Zámocký M., Kamlárová A. & Ferianc P. 2015. Isolation of previously uncultivable bacteria from a nickel contaminated soil using a diffusion-chamber-based approach. Appl. Soil Ecol. 95: 115-127.10.1016/j.apsoil.2015.06.013Search in Google Scholar

Salvador M., Carolina G. & Jose E. 2007. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl. Environ. Microbiol. 73: 6001-6011.10.1128/AEM.00048-07207502417675438Search in Google Scholar

Shapiro E., Biezuner T. & Linnarsson S. 2013. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14: 618-630.10.1038/nrg354223897237Search in Google Scholar

Sherameti I. & Varma A. 2010. Soil heavy metals (Soil Biology). In: Sherameti I. & Varma A. (eds.), Series Soil Biology (Book 19). Springer, 492 pp.Search in Google Scholar

Stewart I. & Falconer I. R. 2008. Cyanobacteria and cyanobacterial toxins. In: Walsh P. J., Smith S. L., Fleming L. E. (eds), Oceans and human health: risks and remedies from the seas, Academic Press, pp. 271-296.Search in Google Scholar

Šmejkalová M., Mikanová O. & Borůvka L. 2003. Effects of heavy metal concentrations on biological activity of soil micro-organisms. Plant Soil Environ. 7: 321-326.10.17221/4131-PSESearch in Google Scholar

Tamura K., Peterson D., Peterson N., Stecher G., Nie M. & Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.10.1093/molbev/msr121Search in Google Scholar

Virender S., Chauhan P. K. & Kanta R. 2010. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Int. J. Pharm. Sci. Rev. Res. 3: 164-167.Search in Google Scholar

Vivas A., Moreno B., del Val C., Macci C., Masciandaroc G. & Benitez E. 2008. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J. Environ. Monit. 10: 1287-1296.10.1039/b808567f18974897Search in Google Scholar

Wagner M. & Horn M. 2006. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17: 241-249.10.1016/j.copbio.2006.05.005Search in Google Scholar

Watve M., Shejval V., Sonawane C., Rahalka, M., Matapurkar A., Schouche Y., Patole M., Phadnis N., Champhenka, A., Damle K., Karandikar S., Kschirsagar V. & Jog M. 2000. The ‘K’ selected oligotrophic bacteria: a key to uncultured diversity? Curr. Sci. 78: 1535-1542.Search in Google Scholar

Wu H., Zhao H., Wen C., Guo Y., Guo J., Xu M. & Li X. 2012. A comparative study of bacterial community structures in the sediments from brominated flame retardants contaminated river and non-contaminated reservoir. Afr. J. Microbiol. Res. 6: 3248-3260.Search in Google Scholar

Wuertz S. & Mergeay M. 1997. The impact of heavy metals on soil microbial communities and their activities. In: Van Elsas J. D., Trevors J. T., Wellington E. M. H. (eds), Modern Soil Microbiology, Marcel Dekker, New York, pp. 607-642.Search in Google Scholar

Zhang H. B., Yang M. X., Shi W., Zheng Y., Tao T. & Zhao Z. W. 2007. Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microbial. Ecol. 54: 705-712.10.1007/s00248-007-9229-y17333426Search in Google Scholar

eISSN:
1339-9802
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Architecture and Design, Architecture, Cities, Regions, Chemistry, Environmental Chemistry, Geosciences, other, Life Sciences, Ecology