Otwarty dostęp

Slurry Erosion – Design of Test Devices


Zacytuj

1. Oka Y. I., Yoshida T.: Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage. Wear 259 (2005) 102-109.Search in Google Scholar

2. Arora H. S., Grewal H. S., Singh H., Mukherjee S.: Zirconium based bulk metallic glass-Better resistance to slurry erosion compared to hydroturbine steel. Wear 307 (2013) 28-34.Search in Google Scholar

3. Grewal H. S., Agrawal A., Singh H.: Design and development of high-velocity slurry erosion test rig using CFD. Journal of Materials Engineering and Performance 22 (2013) 152-161.Search in Google Scholar

4. Singh G., Virdi R. L., Goyal K.: Experimental investigation of slurry erosion behaviour of hard faced AISI 316L Stainless Steel. Universal Journal of Mechanical Engineering 3 (2015) 52-56.Search in Google Scholar

5. Nguyen Q. B. Lim C.Y.H., Nguyen V.B., Wan Y.M., Nai B., Zhang Y.W., Gupta M.: Slurry erosion characteristics and erosion mechanisms of stainless steel. Tribology International 79 (2014) 1-7.Search in Google Scholar

6. Zbrowski A., Mizak W.: Analiza systemów wykorzystywanych w badaniach uderzeniowego zużycia erozyjnego. Problemy eksploatacji 3 (2011) 235-250.Search in Google Scholar

7. Grewal H. S., Agrawal A., Singh H., Shollock B. A.: Slurry erosion performance of Ni-Al2O3 based thermal-sprayed coatings: Effect of angle of impingement. Journal of Thermal Spray Technology 23 (2014) 389-401.Search in Google Scholar

8. International Standard IEC 62364:2013 Hydraulic machines - Guide for dealing with hydroabrasive erosion in Kaplan, Francis and Pelton turbinesSearch in Google Scholar

9. Finnie I.: Some reflections on the past and future of erosion. Wear 186-187 (1995) 1-10.Search in Google Scholar

10. Finnie I.: Erosion of surfaces by solid particles. Wear 3 (1960) 87-103.Search in Google Scholar

11. Grewal H. S., Agrawal A., Singh H.: Slurry erosion mechanism of hydroturbine steel: Effect of operating parameters. Tribolology Letters 52 (2013) 287-303.Search in Google Scholar

12. Lathabai S., Pender D. C.: Microstructural influence in slurry erosion of ceramics. Wear 189 (1995) 122-135.Search in Google Scholar

13. Arora M., Ohl C.D., Morch K.A.: Cavitation inception on microparticles: A self-propelled particle accelerator. Physical Review Letters 92 (2004) 174501-1 - 174501-4Search in Google Scholar

14. Shitole P. P., Gawande S. H., Desale G. R., Nandre B. D.: Effect of Impacting Particle Kinetic Energy on Slurry Erosion Wear. Journal of Bio- and Tribo-Corrosion 1(29) (2015) 1-9.Search in Google Scholar

15. Basha S. S., Periasamy V. M., Kamaraj M.: Slurry Erosion Resistance of Laser-modified 16Cr - 5Ni Stainless Steel. International Journal of ChemTech Research 6 (2014) 691-704.Search in Google Scholar

16. Pugsley V. A., Allen C.: Microstructure / property relationships in the cavitation erosion of tungsten carbide - cobalt. Wear 225-229 (1999) 1017-1024.Search in Google Scholar

17. Grewal H.S., Bhandari S., Singh H.: Parametric study of slurry-erosion of hydroturbine steels with and without detonation gun spray coatings using taguchi technique. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43 (2012) 3387-3401.Search in Google Scholar

18. Santa J.F., Baena J.C. Toro A.: Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery. Wear 263 (2007) 258-264.Search in Google Scholar

19. Santa J.F., Espitia L.A., Blanco J.A., Romo S.A., Toro A.: Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267 (2009) 160-167.Search in Google Scholar

20. Mann B.S.,Arya V., Maiti A.K., Rao M.U.B., Joshi P.: Corrosion and erosion performance of HVOF/TiAlN PVD coatings and candidate materials for high pressure gate valve application. Wear 260 (2006) 75-82.Search in Google Scholar

21. Kumar A, Sapra P.K., Bhandari S.: A review paper on slurry erosion of plasma and flame thermal sprayed coatings. National Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering 2011.Search in Google Scholar

22. Mohammadi F., Luo J.: Effect of cold work on erosion-corrosion of 304 stainless steel. Corros. Sci. 53 (2011) 549-556.Search in Google Scholar

23. Recco A.A.C., López D., Bevilacqua A.F., da Silva F., Tschiptschin A.P.: Improvement of the slurry erosion resistance of an austenitic stainless steel with combinations of surface treatments: Nitriding and TiN coating. Surf. Coatings Technol. 202 (2007) 993-997.Search in Google Scholar

24. Xu J., Zhuo C., Han D., Tao J., Liu L., Jiang S.: Erosion-corrosion behavior of nano-particlereinforced Ni matrix composite alloying layer by duplex surface treatment in aqueous slurry environment. Corros. Sci. 51 (2009) 1055-1068.Search in Google Scholar

25. Mann B.S.: High-energy particle impact wear resistance of hard coatings and their application in hydroturbines. Wear 237 (2000) 140-146Search in Google Scholar

26. ASTM G 40-15: Standard Terminology Relating to Wear and ErosionSearch in Google Scholar

27. ASTM G73-10: Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus.Search in Google Scholar

28. ASTM G76-13: Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets.Search in Google Scholar

29. Syamsundar C., Chatterjee D., Kamaraj M., Maiti A. K.: Erosion Characteristics of Nanoparticle- Reinforced Polyurethane Coatings on Stainless Steel Substrate. J. Mater. Eng. Perform. 24 (2015) 1391-1405.Search in Google Scholar

30. Lina H.CWub., S.K., Yeha C.H.: A comparison of slurry erosion characteristics of TiNi shape memory alloys and SUS304 stainless steel. Wear 246 (2001) 557-565.Search in Google Scholar

31. Lin M. C., Chang L. S., Lin H. C., Yang C. H., Lin K. M.: A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating. Surf. Coatings Technol. 201 (2006) 3193-3198.Search in Google Scholar

32. Zhang J., Richardson M. O. W., Wilcox G. D., Min J., Wang X.: Assessment of resistance of non-metallic coatings to silt abrasion and cavitation erosion in a rotating disk test rig. Wear 194 (1996) 149-155.Search in Google Scholar

33. Padhy M. K., Saini R. P.: Effect of size and concentration of silt particles on erosion of Pelton turbine buckets. Energy 34 (2009) 1477-1483.Search in Google Scholar

34. Rai A. K., Kumar A., Staubli T.: Developing a Test Rig To Measure Hydro-Abrasive Erosion in Pelton Turbine. Int. Conf. Hydropower Sustain. Dev. 05-07 (2015) 535-547.Search in Google Scholar

35. Oka Y. I., Mihara S., Yoshida T.: Impact-angle dependence and estimation of erosion damage to ceramic materials caused by solid particle impact. Wear 267 (2009) 129-135.Search in Google Scholar

36. Momber A.W.: Effects of erodent flow energy and local exposure time on the erosion of cementbased composites at high-speed hydro-abrasive flow. Wear 378-379 (2017) 145-154Search in Google Scholar

37. Zu J. B., Hutchings I. M., Burstein G. T.: Design of a slurry erosion test rig. Wear 140 (1990) 331-344.Search in Google Scholar

38. Wentzel E. J., Allen C.: The erosion-corrosion resistance of tungsten-carbide hard metals. Int. J. Refract. Met. Hard Mater. 15 (1997) 81-87.10.1016/S0263-4368(96)00016-9Search in Google Scholar

39. Li Y., Burstein G. T., Hutchings I. M.: The influence of corrosion on the erosion of aluminium by aqueous silica slurries. Wear 186-187 (1995) 515-522.Search in Google Scholar

40. Fang Q., Sidky P., Hocking M.: Erosive wear behaviour of aluminium based composites. Mater. Des. 18 (1997) 389-393.Search in Google Scholar

41. Gopi K. R., Nagarajan R., Rao S. S., Mandal S.: Erosion model on alumina ceramics: A retrospection, validation and refinement. Wear 264 (2008) 211-218.Search in Google Scholar

42. Manisekaran T., Kamaraj M., M. Sharrif S., Joshi S. V.: Slurry erosion studies on surface modified 13Cr-4Ni steels: Effect of angle of impingement and particle size. J. Mater. Eng. Perform. 16 (2007) 567-572.Search in Google Scholar

43. Shivamurthy R. C., Kamaraj M., Nagarajan R., Shariff S. M., Padmanabham G.: Influence of microstructure on slurry erosive wear characteristics of laser surface alloyed 13Cr-4Ni steel. Wear 267 (2009) 204-212.Search in Google Scholar

44. Shivamurthy R. C., Kamaraj M., Nagarajan R., Shariff S. M., Padmanabham G.: Slurry erosion characteristics and erosive wear mechanisms of Co-based and Ni-based coatings formed by laser surface alloying. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41 (2010) 470-486.Search in Google Scholar

45. Grewal H. S., Arora H. S., Agrawal A., Singh H., Mukherjee S.: Slurry erosion of thermal spray coatings: Effect of sand concentration. Procedia Eng. 68 (2013) 484-490.Search in Google Scholar

46. Wood R. J. K., Mellor B. G., Binfield M. L.: Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear (1997) 70-83.Search in Google Scholar

47. Turenne S., Fiset M., Masounave J.: The effect of sand concentration on the erosion of materials by a slurry jet. Wear 133 (1989) 95-106.Search in Google Scholar

48. Yngve N.: Material removal mechanism of Ni(200) when eroded by a slurry at 30° incidence. Wear 105 (1985) 123-130.Search in Google Scholar

49. Neville A., Mcdougall B.A.B.: Erosion- and Cavitation-Corrosion of Titanium and Its Alloys. Wear 250 (2001), 726-735.Search in Google Scholar

50. Santa J. F., Espitia L. A., Blanco J. A., Romo S. A., Toro A.: Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267 (2009)160-167.Search in Google Scholar

51. Tsai W., Humphrey J. A. C., Cornet I., Levy A. V.: Experimental measurement of accelerated erosion in a slurry pot tester. Wear 68 (1981) 289-303.Search in Google Scholar

52. Gupta R., Singh S. N., Sehadri V.: Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester. Wear 184 (1995) 169-178.Search in Google Scholar

53. Gandhi B. K., Singh S. N., Seshadri V.: A study on the effect of surface orientation on erosion wear of flat specimens moving in a solid-liquid suspension. Wear 254 (2003)1233-1238.Search in Google Scholar

54. Gadhikar A. A., Sharma A., Goel D. B., Sharma C. P.: Fabrication and testing of slurry pot erosion tester. Trans. Indian Inst. Met. 64 (2011) 493-500.Search in Google Scholar

55. Thakur L., Arora N.: A comparative study on slurry and dry erosion behaviour of HVOF sprayed WC-CoCr coatings. Wear 303 (2013).10.1016/j.wear.2013.03.028Search in Google Scholar

56. Tuzson J. J.: Laboratory Slurry Erosion Tests and Pump Wear Rate Calculations. J. Fluids Eng. 106 (1984) 35.Search in Google Scholar

57. Clark H. M., Hawthorne H. M., Xie Y.: Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester. Wear 233-235 (1999) 319-327.Search in Google Scholar

58. Xie Y., Clark H. M., Hawthorne H. M.: Modelling slurry particle dynamics in the Coriolis erosion tester. Wear 225-229 (1999) 405-416.Search in Google Scholar

59. Xie Y., Jiang J.J., Tufa K. Y., Yick S.: Wear resistance of materials used for slurry transport. Wear 332-333 (2015).10.1016/j.wear.2015.01.005Search in Google Scholar

60. Bhushan B.: Fundamentals of Tribology and Bridging the Gab between Macro- and Micro/Nanoscale. B. Bhushan [ed.], Kluwer Academic Publishers, Netherlands, 2014.Search in Google Scholar

61. Lin F. Y., Shao H. S.: Effect of impact velocity on slurry erosion and a new design of a slurry erosion tester. Wear 143 (1991) 231-240.Search in Google Scholar

62. Abouel-Kasem A., Abd-elrhman Y. M., Emara K. M., Ahmed S. M.: Design and performance of slurry erosion tester. J. Tribol. 132 (2010) 1-10.Search in Google Scholar

63. Al-Bukhaiti M. A., Ahmed S. M., Badran F. M. F., Emara K. M.: Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron. Wear 262 (2007) 1187-1198.Search in Google Scholar

eISSN:
2083-4799
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, Functional and Smart Materials