Otwarty dostęp

Energy-Dispersive X-Ray Spectroscopy Mapping of Porous Coatings Obtained on Titanium by Plasma Electrolytic Oxidation in a Solution Containing Concentrated Phosphoric Acid with Copper Nitrate


Zacytuj

1. Hryniewicz T., Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali), 1989, Monograph no. 26, ed. by Koszalin University of Technology Publishing.Search in Google Scholar

2. Hryniewicz T., On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), 2007, ed. by Koszalin University of Technology Publishing.Search in Google Scholar

3. Rokosz K., Electrochemical Polishing in the magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), 2012, ed. by Koszalin University of Technology Publishing.Search in Google Scholar

4. Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and “magnetoelectropolishing” treatments, Surface and Coatings Technology, 62(17-18) (2008), 3073-3076.10.1016/j.matlet.2008.01.130Search in Google Scholar

5. Hryniewicz T., Rokosz K., Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface and Coatings Technology, 204(16–17) (2010), 2583–2592.10.1016/j.surfcoat.2010.02.005Search in Google Scholar

6. Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304L SS after standard and high-current density electropolishing, Surface and Interface Analysis, 47(1) (2015), 87–92.10.1002/sia.5676Search in Google Scholar

7. Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing, Surface and Coatings Technology, 276 (2015), 516–520.10.1016/j.surfcoat.2015.06.022Search in Google Scholar

8. Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007), 325-332.10.1179/174591907X246537Search in Google Scholar

9. Hryniewicz T., Rokicki R., Rokosz K., Corrosion and surface characterization of titanium bio-material after magnetoelectropolishing, Surface and Coatings Technology, 203(9) (2008),1508-1515.10.1016/j.surfcoat.2008.11.028Search in Google Scholar

10. Hryniewicz T., Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics, 122(1) (2010),169–174.10.1016/j.matchemphys.2010.02.055Search in Google Scholar

11. Rokosz K., Hryniewicz T., Raaen S., Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters, Journal of Iron and Steel Research, 83(9) (2012), 910–918.10.1002/srin.201200046Search in Google Scholar

12. Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics, 123(1) (2010), 47–55.10.1016/j.matchemphys.2010.03.060Search in Google Scholar

13. Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial, Anti-Corrosion Methods and Materials, 61(2) (2014), 57–64.10.1108/ACMM-03-2013-1249Search in Google Scholar

14. Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nano-hardness and Young’s modulus of titanium biomaterial, Materials Letters, 83 (2012), 69–72.10.1016/j.matlet.2012.06.010Search in Google Scholar

15. Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field, Materials, 8 (2015), 205-215.10.3390/ma8010205Search in Google Scholar

16. Dehnavi V., Surface Modification of Aluminum Alloys by Plasma Electrolytic Oxidation, University of Western Ontario-Electronic Thesis and Dissertation Repository, paper 2311 (2014), 216 pages.Search in Google Scholar

17. Klapkiv M.D., Nykyforchyn H.M., Posuvailo V.M., Spectral Analysis of an Electrolytic Plasma in the Process of Synthesis of Aluminium Oxide, Materials Science, 30 (1994), 333-343.10.1007/BF00569685Search in Google Scholar

18. Yerokhin A.L., Nie X., Leyland A., Matthews A., Dowey S.J., Plasma electrolysis for surface engineering, Surface and Coatings Technology, 122(2–3) (1999), 73–93.10.1016/S0257-8972(99)00441-7Search in Google Scholar

19. Wei C.B., Tian X.B., Yang S.Q., Wang X.B., Fu R.K.Y., Chu P.K., Anode Current Effects in Plasma Electrolytic Oxidation, Surface and Coatings Technology, 201 (2007), 5021-5024.10.1016/j.surfcoat.2006.07.103Search in Google Scholar

20. Dunleavy C.S., Curran J.A., Clyne T.W., Self-Similar Scaling of Discharge Events through PEO Coatings on Aluminium, Surface and Coatings Technology, 206 (2011), 1051-1061.10.1016/j.surfcoat.2011.07.065Search in Google Scholar

21. Curran J.A., Clyne W.T., Thermo-Physical Properties of Plasma Electrolytic Oxide Coatings on Aluminum, Surface and Coatings Technology, 199 (2005), 168-176.10.1016/j.surfcoat.2004.09.037Search in Google Scholar

22. Dunleavy C.S., Curran J.A., Clyne T.W., Time Dependent Statistics of Plasma Discharge Parameters during Bulk AC Plasma Electrolytic Oxidation of Aluminum, Applied Surface Science, 268 (2013), 397-409.10.1016/j.apsusc.2012.12.109Search in Google Scholar

23. Dehnavi V., Liu X.Y., Luan B.L., Shoesmith D.W., Rohani S., Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy, Surface and Coatings Technology, 251 (2014), 106–114.10.1016/j.surfcoat.2014.04.010Search in Google Scholar

24. Dehnavi V., Luan B.L., Shoesmith D.W., Liu X.Y., Rohani S., Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior, Surface and Coatings Technology, 226 (2013), 100–107.10.1016/j.surfcoat.2013.03.041Search in Google Scholar

25. Cheng Y.-l., Xue Z.-G., Wang Q., Wua X.-Q., Matykina E., Skeldon P., Thompson G.E., New findings on properties of plasma electrolytic oxidation coatings from study of an Al–Cu–Li alloy. Electrochimica Acta, 107 (2013), 358–378.Search in Google Scholar

26. Walsh F.C., Low C.T.J., Wood R.J.K., Stevens K.T., Archer J., Poeton, A.R. and Ryder, A. Review. Plasma Electrolytic Oxidation (PEO) for Production of Anodised Coatings on Lightweight Metal (Al, Mg, Ti) Alloys, Transactions of The Institute of Metal Finishing, 87 (2009), 122-135.10.1179/174591908X372482Search in Google Scholar

27. Curran J., Plasma Electrolytic Oxidation for Surface Protection of Aluminium, Magnesium and Titanium Alloys, Transactions of The Institute of Metal Finishing, 89 (2011), 295-297.10.1179/174591911X13188464808830Search in Google Scholar

28. Hussein R.O., Northwood D.O., Nie X., Processing-Microstructure Relationships in the Plasma Electrolytic Oxidation (PEO) Coating of a Magnesium Alloy, Materials Sciences and Applications, 5 (2014), 124-139.10.4236/msa.2014.53017Search in Google Scholar

29. Hussein R.O., Nie X., Northwood D.O., The Application of Plasma Electrolytic Oxidation (PEO) to the Production of Corrosion Resistant Coatings on Magnesium Alloys: A Review, Corrosion and Materials, 38 (2013), 55-65.Search in Google Scholar

30. Liang J., Srinivasan P.B., Blawert C., Stormer M., Dietzel W., Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate Based Electrolytes, Electrochimica Acta, 54 (2009), 3842-3850.10.1016/j.electacta.2009.02.004Search in Google Scholar

31. Cakmat E., Tekin K.C., Malsyooglu U., Shrestha S., The Effect of Substrate Composition on the Electrochemical and Mechanical Properties of PEO Coatings on Mg alloys, Surface and Coatings Technology, 204 (2010), 1305-1313.10.1016/j.surfcoat.2009.10.012Search in Google Scholar

32. Arabal R., Matykina E., Hashimoto T., Skeldon P., Thompson G.E., Characterization of AC Coatings in Magnesium Alloys, Surface and Coatings Technology, 203 (2009), 2207-2220.10.1016/j.surfcoat.2009.02.011Search in Google Scholar

33. Wang Y.M., Wang F.H., Xu M.J., Zhao B., Guo L.X., Ouyang J.H., Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application, Applied Surface Science, 255 (2009), 9124-9131.10.1016/j.apsusc.2009.06.116Search in Google Scholar

34. Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus, Electrochimica Acta, 56(24) (2011), 8962-8968.10.1016/j.electacta.2011.07.129Search in Google Scholar

35. Jin F. Y., Tong H. H., Shen L. R., Wang K., Chu P. K., Micro-structural and Dielectric Properties of Porous TiO2 Films Synthesized on Titanium Alloys by Micro-Arc Discharge Oxidization, Materials Chemistry and Physics, 100(1) (2006), 31-33.10.1016/j.matchemphys.2005.12.001Search in Google Scholar

36. Chung C.J., Su R.T., Chu H.J., Chen H.T., Tsou H.K., He J.L., Plasma electrolytic oxidation of titanium and improvement in osseointegration. J. Biomed. Mater. Res. B Appl. Biomater, 101(6) (2013),1023-1030.10.1002/jbm.b.3291223529975Search in Google Scholar

37. Kazek-Kęsik A., Krok-Borkowicz M., Jakobik-Kolon A., Pamula E., Simka W., Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part I, Surface and Coatings Technology, 276 (2015), 59-69.10.1016/j.surfcoat.2015.06.034Search in Google Scholar

38. Kazek-Kęsik A., Krok-Borkowicz M., Jakobik-Kolon A., Pamula E., Simka W., Biofunctionalization of Ti-13Nb-13Zr alloy surface by plasma electrolytic oxidation. Part II, Surface and Coatings Technology, 276 (2015), 23-30.10.1016/j.surfcoat.2015.06.035Search in Google Scholar

39. Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy, Przemysł Chemiczny, 90(1) (2011), 84-90.Search in Google Scholar

40. Yerokhin A.L., Nie X., Leyland A., Matthews A. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy, Surface and Coatings Technology, 130(2-3) (2000), 195-206.10.1016/S0257-8972(00)00719-2Search in Google Scholar

41. Rokosz K., Hryniewicz T., Dudek Ł., Malorny W., SEM and EDS analysis of Nitinol surfaces treated by Plasma Electrolytic Oxidation, Advances in Materials Science, 15(45) (2015), 41-47.10.1515/adms-2015-0014Search in Google Scholar

42. Rokosz K., Hryniewicz T., Plasma Electrolytic Oxidation as a modern method to form porous coatings enriched in phosphorus and copper on biomaterials, World Scientific News, 35 (2016), 44-61.Search in Google Scholar

43. Rokosz K., Hryniewicz T., Raaen S., Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties, The International Journal of Advanced Manufacturing Technology, (2015), DOI: 10.1007/s00170-015-8086-y10.1007/s00170-015-8086-ySearch in Google Scholar

44. Sowa M., Kazek-Kęsik A., Socha R.P., Dercz G., Michalska J., Simka W., Modification of tantalum surface via plasma electrolytic oxidation in silicate solutions, Electrochimica Acta, 114 (2013), 627-636.10.1016/j.electacta.2013.10.047Search in Google Scholar

45. Sowa M., Kazek-Kęsik A., Krząkała A., Socha R.P., Dercz G., Michalska J., Simka W., Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions, Journal of Solid State Electrochemistry, 18(11) (2014), 3129-3142.10.1007/s10008-013-2341-7Search in Google Scholar

46. Simka W., Sowa M., Socha R.P., Maciej A., Michalska J., Anodic oxidation of zirconium in silicate solutions, Electrochimica Acta, 104 (2013), 518-525.10.1016/j.electacta.2012.10.130Search in Google Scholar

47. Simka W., Habilitation summary of professional accomplishments (in Polish). Silesian University of Technology (Wydział Chemiczny, Politechnika Śląska), Gliwice, Chemical Engineering Department, 2013, 1–18.Search in Google Scholar

48. Jelinek M., Kocourek T., Remsa J., Weiserová M., Jurek K., Mikšovský J., Strnad J., Galandáková A., Ulrichováe J., Antibacterial, cytotoxicity and physical properties of laser-silver doped hydroxyapatite layers, Materials Science and Engineering: C, 33(3) (2013), 1242–1246.10.1016/j.msec.2012.12.01823827567Search in Google Scholar

49. Mishra G., Dash B., Pandey S., Mohanty P.P., Antibacterial actions of silver nanoparticles incorporated Zn–Al layered double hydroxide and its spinel, Journal of Environmental Chemical Engineering, 1(4) (2013),1124–1130.10.1016/j.jece.2013.08.031Search in Google Scholar

50. Rajendran A., Pattanayak D.K., Silver incorporated antibacterial, cell compatible and bioactive titania layer on Ti metal for biomedical applications, RSC Advances, 106(4) (2014), 61444–61455.10.1039/C4RA13107JSearch in Google Scholar

51. Trujillo N.A., Oldinski R.A., Ma H., Bryers J.D., Williams J.D., Popat K.C., Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium, Materials Science and Engineering: C, 32(8) (2012), 2135–2144.10.1016/j.msec.2012.05.012Search in Google Scholar

52. Hempel F., Finke B., Zietz C., Bader R., Weltmann K-D., Polak M., Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper, Surface and Coatings Technology, 256 (2014), 52–58.10.1016/j.surfcoat.2014.01.027Search in Google Scholar

53. Bellows C.G., Heersche J.N., Aubin J.E., Aluminium accelerates osteoblastic differentiation but is cytotoxic in long-term rat calvaria cell cultures, Calcif. Tissue Int., 65 (1999), 59–65.10.1007/s00223990065810369735Search in Google Scholar

54. Krewski D., Yokel R.A., Nieboer E., Borchelt D., Cohen J., Harry J., Kacew S., Lindsay J., Mahfouz A.M., Rondeau V., Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide, J. Toxicol. Environ. Health B Crit. Rev., 10(1) (2007),1–269.10.1080/10937400701597766278273418085482Search in Google Scholar

55. Solving Titanium Implant Osseointegration Problems by Using Epoxy/Carbon-Fiber-Reinforced Composite, Titanium Today, (2015), 26–28.Search in Google Scholar

56. Browne R.C., Vanadium poisoning from gas turbines, British Journal of Industrial Medicine, 2(12) (1995), 57–59.10.1136/oem.12.1.57103760214351648Search in Google Scholar

57. Jacobs J.J., Skipor A.K., Black J., Urban R., Galante J.O., Release and excretion of metal in patients who have a total hip-replacement component made of titanium-base alloy, The Journal of Bone and Joint Surgery, 73 (1991), 1475–1486.10.2106/00004623-199173100-00005Search in Google Scholar

58. Aluminum CAS # 7429-90-5, PUBLIC HEALTH STATEMENT, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, http://www.atsdr.cdc.gov, Atlanta GA, 2008.Search in Google Scholar

59. Landsberg J.P., McDonald B., Watt F., Absence of aluminium in neuritic plaque cores in Alzheimer’s disease, Nature, 360 (1992), 65–68.10.1038/360065a01436075Search in Google Scholar

60. Seiler H.G., Sigel H., Sigel A., Handbook of toxicity of inorganic compounds, Marcel Dekker Inc., 1998, New York, NY.Search in Google Scholar

eISSN:
2083-4799
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, Functional and Smart Materials