Otwarty dostęp

Simultaneous quantitative analysis of olmesartan, amlodipine and hydrochlorothiazide in their combined dosage form utilizing classical and alternating least squares based chemometric methods


Zacytuj

1. T. Sharma, N. Mishra, S. C. Si and D. G. Shankar, Simultaneous estimation of olmesartan medoxomil and amlodipine besylate in solid dosage form by UV spectrophotometry, Pharm. Lett.2 (2010) 302–307.Search in Google Scholar

2. M. Mirzaei, M. Khayat and A. Saeidi, Determination of para-aminobenzoic acid (PABA) in B-complex tablets using the Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) method, Sci. Iran. 19 (2012) 561–564; DOI: 10.1016/j.scient.2011.12.016.10.1016/j.scient.2011.12.016Search in Google Scholar

3. E. Peré-Trepat, S. Lacorte and R. Tauler, Alternative calibration approaches for LC–MS quantitative determination of coeluted compounds in complex environmental mixtures using multivariate curve resolution, Anal. Chim. Acta595 (2007) 228–237; DOI: 10.1016/j.aca.2007.04.011.10.1016/j.aca.2007.04.011Search in Google Scholar

4. T. Azzouz and R. Tauler, Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples, Talanta74 (2008) 1201–1210; DOI: 10.1016/j.talanta.2007.08.024.10.1016/j.talanta.2007.08.024Search in Google Scholar

5. M. Antunes, J. Simao, A. Duarte and R. Tauler, Multivariate curve resolution of overlapping voltammetric peaks: quantitative analysis of binary and quaternary metal mixtures, Analyst127 (2002) 809–817; DOI: 10.1039/B200243B.10.1039/b200243bSearch in Google Scholar

6. H. Winning, F. H. Larsen, R. Bro and S. B. Engelsen, Quantitative analysis of NMR spectra with chemometrics, J. Magn. Reson.190 (2008) 26–32; DOI: 10.1016/j.jmr.2007.10.005.10.1016/j.jmr.2007.10.005Search in Google Scholar

7. K. Koga, S. Yamagish i, M. Takeuchi, Y. Inagaki, S. Amano, T. Okamoto, T. Saga, Z. Makita and M. Yoshizuka, CS-886, a new angiotensin II type 1 receptor antagonist, ameliorates glomerular anionic site loss and prevents progression of diabetic nephropathy in Otsuka Long-Evans Tokushima fatty rats, Mol. Med.8 (2002) 591–599.10.1007/BF03402169Search in Google Scholar

8. Martindale – The Complete Drug Reference“ (Ed. S. C. Sweetman), 36 ed., The Pharmaceutical Press, London 2009.Search in Google Scholar

9. R. F. Reilly and E. K. Jackson, Regulation of Renal Function and Vascular Volume, in Goodman and Gilman’s The Pharmacological Basis of Therapeutics (Eds. L. L. Brunton, B. A. Chabner and B. C. Knollmann) McGraw Hill, New York 2010.Search in Google Scholar

10. A. Pawar, A. N. Rao, J. S. Rao and V. J. Rao, A validated method for the simultaneous quantification of hydrochlorothiazide, olmesartan medoxomil and amlodipine in bulk and pharmaceutical dosage form, J. Pharm. Res.5 (2012) 43–46.Search in Google Scholar

11. K. K. Kumar, C. K. Rao, G. Madhusudan and K. Mukkanti, Rapid simultaneous determination of olmesartan-amlodipine and hydrochlorothiazide in combined pharmaceutical dosage form by stability-indicating ultra performance liquid chromatography, Am. J. Anal. Chem.3 (2012) 50–58; DOI: 10.4236/ajac.2012.31008.10.4236/ajac.2012.31008Search in Google Scholar

12. J. R. Rao, M. P. Rajput and S. S. Yadav, Simultaneous quantitation of olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide in pharmaceutical dosage form by using HPLC, Int. J. Pharm. Tech. Res.3 (2011) 1435–1440.Search in Google Scholar

13. J. Saminathan and T. Vetrichelvan, Method development and validation of olmesartan, amlodipine and hydrochlorothiazide in combined tablet dosage form, Int. J. Pharm. Res. Anal.1 (2011) 7–14.Search in Google Scholar

14. H. Sharma, N. Jain and S. Jain, Development of spectrophotometric method for quantitative estimation of amlodipine besylate, olmesartan medoxomil and hydrochlorthiazide in tablet dosage form, Pharm. Anal. Acta2 (2011) 1–4.10.4172/2153-2435.1000126Search in Google Scholar

15. S. R. Patel and C. N. Patel, Development and validation of spectrophotometric method for determination of olmesartan, amlodipine and hydrochlorothiazide in combined pharmaceutical dosage forms, Novel Sci. Int. J. Pharm. Sci. 1 (2012) 317–321.Search in Google Scholar

16. H. W. Darwish, Application of smart spectrophotometric methods and artificial neural network for the simultaneous quantitation of olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide in their combined pharmaceutical dosage form, Chem. Cent. J. 7 (2013) 1–9; DOI: 10.1186/1752-153X-7-22.10.1186/1752-153X-7-22Search in Google Scholar

17. H. W. Darwish, A. H. Bakheit and M. I. Attia, Three multivariate calibration methods for simultaneous spectrophotometric determination of olmesartan medoxamil, amlodipine besylate and hydrochlorothiazide in their combined dosage form, Dig. J. Nanomat. Biostr.8 (2013) 323–333.Search in Google Scholar

18. R. Tauler, Multivariate curve resolution applied to second order data, Chemometr. Intell. Lab. Syst. 30 (1995) 133–146; DOI: 10.1016/0169-7439(95)00047-X.10.1016/0169-7439(95)00047-XSearch in Google Scholar

19. R. Gargallo, R. Tauler, F. Cuesta-Sanchez and D. Massart, Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation, TrAC Trends Analyt. Chem. 15 (1996) 279–286. DOI: 10.1016/0165-9936(96)00048-9.10.1016/0165-9936(96)00048-9Search in Google Scholar

20. R. Kramer, Chemometric Techniques for Quantitative Analysis, CRC, New York 1998.10.1201/9780203909805Search in Google Scholar

21. S. Wold, H. Antti, F. Lindgren and J. Öhman, Orthogonal signal correction of near-infrared spectra, Chemometr. Intell. Lab. Syst. 44 (1998) 175–185; DOI: 10.1016/SSearch in Google Scholar

22. J. Sjöblom, O. Svensson, M. Josefson, H. Kullberg and S. Wold, An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra, Chemometr. Intell. Lab. Syst. 44 (1998) 229–244; DOI: 10.1016/S0169-7439(98)00112-9.10.1016/S0169-7439(98)00112-9Search in Google Scholar

23. T. Fearn, On orthogonal signal correction, Chemometr. Intell. Lab. Syst. 50 (2000) 47–52; DOI: 10.1016/S0169-7439(99)00045-3.10.1016/S0169-7439(99)00045-3Search in Google Scholar

24. J. A. Westerhuis, S. de Jong and A. K. Smilde, Direct orthogonal signal correction, Chemometr. Intell. Lab. Syst. 56 (2001) 13–25; DOI: 10.1016/S0169-7439(01)00102-2.10.1016/S0169-7439(01)00102-2Search in Google Scholar

25. H. C. Goicoechea and A. C. Olivieri, A comparison of orthogonal signal correction and net analyte preprocessing methods. Theoretical and experimental study, Chemometr. Intell. Lab. Syst. 56 (2001) 73–81; DOI: 10.1016/S0169-7439(01)00110-1.10.1016/S0169-7439(01)00110-1Search in Google Scholar

26. J. Jaumot, R. Gargallo, A. de Juan and R. Tauler, A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB, Chemometr. Intell. Lab. Syst. 76 (2005) 101–110; DOI: 10.1016/j.chemolab.2004.12.007.10.1016/j.chemolab.2004.12.007Search in Google Scholar

27. A. C. Olivieri, H. C. Goicoechea and F. A. Iñón, MVC1: an integrated MatLab toolbox for first-order multivariate calibration, Chemometr. Intell. Lab. Syst. 73 (2004) 189–197; DOI: 10.1016/j.chemolab.2004.03.004.10.1016/j.chemolab.2004.03.004Search in Google Scholar

28. R. G. Brereton, Multi level multifactor designs for multivariate calibration, Analyst122 (1997) 1521–1529; DOI: 10.1039/A703654J.10.1039/a703654jSearch in Google Scholar

29. D. M. Haaland and E. V. Thomas, Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information, Anal. Chem.60 (1988) 1193–1202; DOI: 10.1021/ac00162a020.10.1021/ac00162a020Search in Google Scholar

eISSN:
1846-9558
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Farmacja, Farmakologia, inne