This work is licensed under the Creative Commons Attribution 4.0 International License.
Anghileri D., Pianosi F., Soncini-Sessa R., 2014. Trend detection in seasonal data: From hydrology to water resources. Journal of Hydrology 511: 171–179. DOI 10.1016/j.jhy-drol.2014.01.022.AnghileriD.PianosiF.Soncini-SessaR.2014. Trend detection in seasonal data: From hydrology to water resources. Journal of Hydrology511: 171–179. DOI 10.1016/j.jhy-drol.2014.01.022.Open DOISearch in Google Scholar
Ashton G.D., 1986. River and lake ice engineering. Water Resources Publications, Littleton, Colorado.AshtonG.D.1986. River and lake ice engineering. Water Resources Publications, Littleton, Colorado.Search in Google Scholar
Ashton G.D., 2011. River and lake ice thickening, thinning, and snow ice formation. Cold Regions Science and Technology 68(1–2): 3–19. DOI 10.1016/j.coldregions.2011.05.004.AshtonG.D.2011. River and lake ice thickening, thinning, and snow ice formation. Cold Regions Science and Technology68(1–2): 3–19. DOI 10.1016/j.coldregions.2011.05.004.Open DOISearch in Google Scholar
Asuero A.G., Sayago A., González A.G., 2006. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry 36(1): 41–59. DOI 10.1080/10408340500526766.AsueroA.G.SayagoA.GonzálezA.G.2006. The correlation coefficient: An overview. Critical Reviews in Analytical Chemistry36(1): 41–59. DOI 10.1080/10408340500526766.Open DOISearch in Google Scholar
Bagnold R.A., 1966. An approach to the sediment transport problem from general physics. Professional Paper 422. DOI 10.3133/pp422i.BagnoldR.A.1966. An approach to the sediment transport problem from general physics. Professional Paper422. DOI 10.3133/pp422i.Open DOISearch in Google Scholar
Batima P., Batnasan N., Bolormaa B., 2004. Trends in river and lake ice in Mongolia. AIACC (Assessments of Impacts and Adaptations to Climate Change) Working Paper No. 4.BatimaP.BatnasanN.BolormaaB.2004. Trends in river and lake ice in Mongolia. AIACC (Assessments of Impacts and Adaptations to Climate Change) Working Paper No. 4.Search in Google Scholar
Beltaos S., (ed.) 2013. River ice formation. Committee on River Ice Processes and the Environment, Canadian Geophysical Union Hydrology Section, Edmonton.BeltaosS., (ed.) 2013. River ice formation. Committee on River Ice Processes and the Environment, Canadian Geophysical Union Hydrology Section, Edmonton.Search in Google Scholar
Bochenek W., Kijowska-Strugała M., 2022. Zmiany w strukturze odpływu wody ze zlewni karpackich w półroczu hydrologicznym zimowym w latach 19812020. Przegląd Geograficzny 94(4): 503–519. DOI 10.7163/PrzG.2022.4.5.BochenekW.Kijowska-StrugałaM.2022. Zmiany w struk-turze odpływu wody ze zlewni karpackich w półroczu hydrologicznym zimowym w latach 19812020. Przegląd Geograficzny94(4): 503–519. DOI 10.7163/PrzG.2022.4.5.Open DOISearch in Google Scholar
Brown D.R., Arp C.D., Brinkman T.J., Cellarius B.A., Engram M., Miller M.E., Spellman K.V., 2023. Long-term change and geospatial patterns of river ice cover and navigability in southcentral Alaska detected with remote sensing. Arctic, Antarctic, and Alpine Research 55(1): 1–18. DOI 10.1080/15230430.2023.2241279.BrownD.R.ArpC.D.BrinkmanT.J.CellariusB.A.EngramM.MillerM.E.SpellmanK.V.2023. Long-term change and geospatial patterns of river ice cover and navigability in southcentral Alaska detected with remote sensing. Arctic, Antarctic, and Alpine Research55(1): 1–18. DOI 10.1080/15230430.2023.2241279.Open DOISearch in Google Scholar
Chen Y., She Y., 2020. Long-term variations of river ice breakup timing across Canada and its response to climate change. Cold Regions Science and Technology 176: 103091. DOI 10.1016/j.coldregions.2020.103091.ChenY.SheY.2020. Long-term variations of river ice breakup timing across Canada and its response to climate change. Cold Regions Science and Technology176: 103091. DOI 10.1016/j.coldregions.2020.103091.Open DOISearch in Google Scholar
Cyberska B., 1975. Wpływ zbiornika retencyjnego na trans-formację naturalnego reżimu termicznego rzeki. Prace IMGW, 4: 45–108.CyberskaB.1975. Wpływ zbiornika retencyjnego na trans-formację naturalnego reżimu termicznego rzeki. Prace IMGW, 4: 45–108.Search in Google Scholar
Dynowska I., 1971. Typy reżimów rzecznych w Polsce, Zeszyty Naukowe Uniwersytet Jagielloński, Prace Geograficzne: 28.DynowskaI.1971. Typy reżimów rzecznych w Polsce, Zeszyty Naukowe Uniwersytet Jagielloński, Prace Geograficzne: 28.Search in Google Scholar
Fukś M., 2023. Changes in river ice cover in the context of climate change and dam impacts: A review. Aquatic Sciences 85(113): 1–23. DOI 10.1007/s00027-023-01011-4.FukśM.2023. Changes in river ice cover in the context of climate change and dam impacts: A review. Aquatic Sciences85(113): 1–23. DOI 10.1007/s00027-023-01011-4.Open DOISearch in Google Scholar
Fukś M., 2024. Assessment of the impact of dam reservoirs on river ice cover - An example from the Carpathians (central Europe). The Cryosphere 18: 2509–2529. DOI 10.5194/tc-18-2509-2024.FukśM.2024. Assessment of the impact of dam reservoirs on river ice cover-An example from the Carpathians (central Europe). The Cryosphere18: 2509–2529. DOI 10.5194/tc-18-2509-2024.Open DOISearch in Google Scholar
Fukś M., Kędra M., Wiejaczka Ł., 2024. Assessing the impact of climate change and reservoir operation on the thermal and ice regime of mountain rivers using the XGBoost model and wavelet analysis. Stochastic Environmental Research and Risk Assessment 38: 4275–4294. DOI 10.1007/s00477-024-02803-2.FukśM.KędraM.WiejaczkaŁ.2024. Assessing the impact of climate change and reservoir operation on the thermal and ice regime of mountain rivers using the XGBoost model and wavelet analysis. Stochastic Environmental Research and Risk Assessment38: 4275–4294. DOI 10.1007/s00477-024-02803-2.Open DOISearch in Google Scholar
Gołek J., 1957. Zjawiska lodowe na rzekach polskich. Prace Państwowego Instytutu Hydrologiczno-Meteorologicznego, Warszawa: 48.GołekJ.1957. Zjawiska lodowe na rzekach polskich. Prace Państwowego Instytutu Hydrologiczno-Meteorologicznego, Warszawa: 48.Search in Google Scholar
Graf R., Wrzesiński D., 2020. Detecting patterns of changes in river water temperature in Poland. Water 12(5): 1–20. DOI 10.3390/w12051327.GrafR.WrzesińskiD.2020. Detecting patterns of changes in river water temperature in Poland. Water12(5): 1–20. DOI 10.3390/w12051327.Open DOISearch in Google Scholar
Gutiérrez J.M., Jones R.G., Narisma G.T., Alves L.M., Amjad M., Gorodetskaya I.V., Grose M., Klutse N.A.B., Krakovska S., Li J., Martínez-Castro D., Mearns L.O., Mernild S.H., Ngo-Duc T., van den Hurk B., Yoon J.-H., 2021. Atlas. In: Masson-Delmotte V., zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., and Zhou B. (eds), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: 1927-2058. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. DOI 10.1017/9781009157896.021.GutiérrezJ.M.JonesR.G.NarismaG.T.AlvesL.M.AmjadM.GorodetskayaI.V.GroseM.KlutseN.A.B.KrakovskaS.LiJ.Martínez-CastroD.MearnsL.O.MernildS.H.Ngo-DucT.van den HurkB.YoonJ.-H.2021. Atlas. In: Masson-DelmotteV.zhaiP.PiraniA.ConnorsS.L.PéanC.BergerS.CaudN.ChenY.GoldfarbL.GomisM.I.HuangM.LeitzellK.LonnoyE.MatthewsJ.B.R.MaycockT.K.WaterfieldT.YelekçiO.YuR.ZhouB. (eds), Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change: 1927-2058. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. DOI 10.1017/9781009157896.021.Open DOISearch in Google Scholar
Hamed K.H., 2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology 349(3–4): 350–363. DOI 10.1016/j.jhy-drol.2007.11.009.HamedK.H.2008. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology349(3–4): 350–363. DOI 10.1016/j.jhy-drol.2007.11.009.Open DOISearch in Google Scholar
Hamed K.H., Rao A.R., 1998. A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology 204(1–4): 182–196. DOI 10.1016/S0022-1694(97)00125-X.HamedK.H.RaoA.R.1998. A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology204(1–4): 182–196. DOI 10.1016/S0022-1694(97)00125-X.Open DOISearch in Google Scholar
Hanus S., Hrachowitz M., Zekollari H., Schoups G., Vizcaino M., Kaitna R., 2021. Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria. Hydrology and Earth System Sciences 25: 3429–3453. DOI 10.5194/hess-25-3429-2021.HanusS.HrachowitzM.ZekollariH.SchoupsG.VizcainoM.KaitnaR.2021. Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria. Hydrology and Earth System Sciences25: 3429–3453. DOI 10.5194/hess-25-3429-2021.Open DOISearch in Google Scholar
Harris I., Osborn T.J., Jones P., Lister D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7(109): 1–18. DOI 10.1038/s41597-020-0453-3.HarrisI.OsbornT.J.JonesP.ListerD.2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data7(109): 1–18. DOI 10.1038/s41597-020-0453-3.Open DOISearch in Google Scholar
Hauke J., Kossowski T., 2011. Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Quaestiones Geographicae 30(2): 87–93. DOI 10.2478/v10117-011-0021-1.HaukeJ.KossowskiT.2011. Comparison of values of Pearson’s and Spearman’s correlation coefficient on the same sets of data. Quaestiones Geographicae30(2): 87–93. DOI 10.2478/v10117-011-0021-1.Open DOISearch in Google Scholar
IMWM-NRI [Institute of Meteorology and Water Management – National Research Institute], 2024. Online: https://danepubliczne.imgw.pl/(accessed 31 July 2024).IMWM-NRI [Institute of Meteorology and Water Management – National Research Institute], 2024. Online: https://danepubliczne.imgw.pl/ (accessed 31 July 2024).Search in Google Scholar
Jonkers A.R.T., Sharkey K.J., 2016. The differential warming response of Britain’s rivers (1982-2011). Plos One 11(11): e0166247. DOI 10.1371/journal.pone.0166247.JonkersA.R.T.SharkeyK.J.2016. The differential warming response of Britain’s rivers (1982-2011). Plos One11(11): e0166247. DOI 10.1371/journal.pone.0166247.Open DOISearch in Google Scholar
Kędra M., 2020. Regional response to global warming: Water temperature trends in semi-natural mountain river systems. Water 12(1): 1–15. DOI 10.3390/w12010283.KędraM.2020. Regional response to global warming: Water temperature trends in semi-natural mountain river systems. Water12(1): 1–15. DOI 10.3390/w12010283.Open DOISearch in Google Scholar
Kędra M., Wiejaczka Ł, 2018. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Science of the Total Environment 626: 1474–1483. DOI 10.1016/j.scitotenv.2017.10.044.KędraM.WiejaczkaŁ2018. Climatic and dam-induced impacts on river water temperature: Assessment and management implications. Science of the Total Environment626: 1474–1483. DOI 10.1016/j.scitotenv.2017.10.044.Open DOISearch in Google Scholar
Kędzia S., Chrustek P., Kubacka D., Pyrc R., 2023. Variability and changes of the height and duration of snow cover on the Gąsienicowa Glade (Tatras). International Journal of Climatology 43(15): 7018–7031. DOI 10.1002/joc.8249.KędziaS.ChrustekP.KubackaD.PyrcR.2023. Variability and changes of the height and duration of snow cover on the Gąsienicowa Glade (Tatras). International Journal of Climatology43(15): 7018–7031. DOI 10.1002/joc.8249.Open DOISearch in Google Scholar
Kendall, M.G., 1975. Rank correlation methods. Oxford University Press, Oxford.KendallM.G.1975. Rank correlation methods. Oxford University Press, Oxford.Search in Google Scholar
Kochanek K., Rutkowska A., Baran-Gurgul K., Kuptel-Mar-kiewicz I., Mirosław-Świątek D., Grygoruk M., 2024. Analysis of changes in the occurrence of ice phenomena in upland and mountain rivers of Poland. Plos One 19(7): e0307842. DOI 10.1371/journal.pone.0307842.KochanekK.RutkowskaA.Baran-GurgulK.Kuptel-Mar-kiewiczI.Mirosław-ŚwiątekD.GrygorukM.2024. Analysis of changes in the occurrence of ice phenomena in upland and mountain rivers of Poland. Plos One19(7): e0307842. DOI 10.1371/journal.pone.0307842.Open DOISearch in Google Scholar
Laghari A.N., Vanham D., Rauch W., 2012. To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps. Hydrological Sciences Journal 57(1): 103–117. DOI 10.1080/02626667.2011.637040.LaghariA.N.VanhamD.RauchW.2012. To what extent does climate change result in a shift in Alpine hydrology? A case study in the Austrian Alps. Hydrological Sciences Journal57(1): 103–117. DOI 10.1080/02626667.2011.637040.Open DOISearch in Google Scholar
Lind L., Alfredsen K., Kuglerová L., Nilsson C., 2016. Hydrological and thermal controls of ice formation in 25 boreal stream reaches. Journal of Hydrology 540: 797–811. DOI 10.1016/j.jhydrol.2016.06.053.LindL.AlfredsenK.KuglerováL.NilssonC.2016. Hydrological and thermal controls of ice formation in 25 boreal stream reaches. Journal of Hydrology540: 797–811. DOI 10.1016/j.jhydrol.2016.06.053.Open DOISearch in Google Scholar
Magnuson J.J., Robertson D.M., Benson B.J., Wynne R.H., Livingstone D.M., Arai T., Assel R.A., Barry R.G., Card V.V., Kuusisto E., Granin N.G., Prowse T.D., Stewart K.M., Vuglinski V.S., 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289(5485): 1743–1746. DOI 10.1126/science.289.5485.1743.MagnusonJ.J.RobertsonD.M.BensonB.J.WynneR.H.LivingstoneD.M.AraiT.AsselR.A.BarryR.G.CardV.V.KuusistoE.GraninN.G.ProwseT.D.StewartK.M.VuglinskiV.S.2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science289(5485): 1743–1746. DOI 10.1126/science.289.5485.1743.Open DOISearch in Google Scholar
Mann H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society 13: 245–259. DOI 10.2307/1907187.MannH.B.1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society13: 245–259. DOI 10.2307/1907187.Open DOISearch in Google Scholar
Marsz A., Styszyńska A., 2023. Non-stationary of the air temperature course over Europe – change of the thermal regime in Europe in 1987-1989 and its causes. Prace Geograficzne 170: 9–46. DOI 10.4467/20833113PG.23.001.17489.MarszA.StyszyńskaA.2023. Non-stationary of the air temperature course over Europe – change of the thermal regime in Europe in 1987-1989 and its causes. Prace Geograficzne170: 9–46. DOI 10.4467/20833113PG.23.001.17489.Open DOISearch in Google Scholar
Marszelewski W., Pius B., 2016. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrological Sciences Journal 61(8): 1430–1442. DOI 10.1080/02626667.2015.1040800.MarszelewskiW.PiusB.2016. Long-term changes in temperature of river waters in the transitional zone of the temperate climate: A case study of Polish rivers. Hydrological Sciences Journal61(8): 1430–1442. DOI 10.1080/02626667.2015.1040800.Open DOISearch in Google Scholar
Mostowik K., Siwek J., Kisiel M., Kowalik K., Krzysik M., Plenzler J., Rzonca B., 2019. Runoff trends in a changing climate in the Eastern Carpathians (Bieszczady Mountains, Poland). Catena 182: 104174. DOI 10.1016/j.cate-na.2019.104174.MostowikK.SiwekJ.KisielM.KowalikK.KrzysikM.PlenzlerJ.RzoncaB.2019. Runoff trends in a changing climate in the Eastern Carpathians (Bieszczady Mountains, Poland). Catena182: 104174. DOI 10.1016/j.cate-na.2019.104174.Open DOISearch in Google Scholar
Muelchi R., Rößler O., Schwanbeck J., Weingartner R., Martius O., 2021. River runoff in Switzerland in a changing climate-Changes in moderate extremes and their seasonality. Hydrology and Earth System Sciences 25(6): 35773594. DOI 10.5194/hess-25-3577-2021.MuelchiR.RößlerO.SchwanbeckJ.WeingartnerR.MartiusO.2021. River runoff in Switzerland in a changing climate-Changes in moderate extremes and their seasonality. Hydrology and Earth System Sciences25(6): 35773594. DOI 10.5194/hess-25-3577-2021.Open DOISearch in Google Scholar
Newton A.M.W, Mullan D.J., 2021. Climate change and Northern Hemisphere lake and river ice phenology from 1931-2005. The Cryosphere 15(5): 2211–2234. DOI 10.5194/tc-15-2211-2021.NewtonA.M.WMullanD.J.2021. Climate change and Northern Hemisphere lake and river ice phenology from 1931-2005. The Cryosphere15(5): 2211–2234. DOI 10.5194/tc-15-2211-2021.Open DOISearch in Google Scholar
North R.P., Livingstone D.M., Hari R.E., Köster O., Nieder-hauser P., Kipfer R., 2013. The physical impact of the late 1980s climate regime shift on Swiss rivers and lakes. Inland Waters 3(3): 341–350. DOI 10.5268/IW-3.3.560.NorthR.P.LivingstoneD.M.HariR.E.KösterO.Nieder-hauserP.KipferR.2013. The physical impact of the late 1980s climate regime shift on Swiss rivers and lakes. Inland Waters3(3): 341–350. DOI 10.5268/IW-3.3.560.Open DOISearch in Google Scholar
Pawłowski B., 2017. Przebieg zjawisk lodowych dolnej Wisły w latach 1960-2014. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.PawłowskiB.2017. Przebieg zjawisk lodowych dolnej Wisły w latach 1960-2014. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń.Search in Google Scholar
Pekárová P., Miklánek P., Halmová D., Onderka M., Pekár J., Kučárová K., Liová S., Škoda P., 2011. Long-term trend and multi-annual variability of water temperature in the pristine Bela River basin (Slovakia). Journal of Hydrology 400(3–4): 333–340. DOI 10.1016/j.jhydrol.2011.01.048.PekárováP.MiklánekP.HalmováD.OnderkaM.PekárJ.KučárováK.LiováS.ŠkodaP.2011. Long-term trend and multi-annual variability of water temperature in the pristine Bela River basin (Slovakia). Journal of Hydrology400(3–4): 333–340. DOI 10.1016/j.jhydrol.2011.01.048.Open DOISearch in Google Scholar
Rajwa-Kuligiewicz A., Bojarczuk A., 2024. Evaluating the impact of climatic changes on streamflow in headwater mountain catchments with varying human pressure. An example from the Tatra Mountains (Western Carpathians). Journal of Hydrology: Regional Studies 53: 101755. DOI 10.1016/j.ejrh.2024.101755.Rajwa-KuligiewiczA.BojarczukA.2024. Evaluating the impact of climatic changes on streamflow in headwater mountain catchments with varying human pressure. An example from the Tatra Mountains (Western Carpathians). Journal of Hydrology: Regional Studies53: 101755. DOI 10.1016/j.ejrh.2024.101755.Open DOISearch in Google Scholar
Sen P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63(324): 1379–1389. DOI10.1080/01621459.1968.10480934.SenP.K.1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association63(324): 1379–1389. DOI10.1080/01621459.1968.10480934.Open DOISearch in Google Scholar
Siwek J., Mostowik K., Liova S., Rzonca B., Wacławczyk P., 2022. Baseflow trends for midsize Carpathian catchments in Poland and Slovakia in 1970-2019. Water 15(1): 1–17. DOI 10.3390/w15010109.SiwekJ.MostowikK.LiovaS.RzoncaB.WacławczykP.2022. Baseflow trends for midsize Carpathian catchments in Poland and Slovakia in 1970-2019. Water15(1): 1–17. DOI 10.3390/w15010109.Open DOISearch in Google Scholar
Soja R., 2002. Hydrologiczne aspekty antropopresji w polskich Karpatach. Prace Geograficzne. Polska Akademia Nauk, Warszawa.SojaR.2002. Hydrologiczne aspekty antropopresji w polskich Karpatach. Prace Geograficzne. Polska Akademia Nauk, Warszawa.Search in Google Scholar
Soja R., Wiejaczka Ł, 2014. The impact of a reservoir on the physicochemical properties of water in a mountain river. Water and Environment Journal 28(4): 473–482. DOI 10.1111/wej.12059.SojaR.WiejaczkaŁ2014. The impact of a reservoir on the physicochemical properties of water in a mountain river. Water and Environment Journal28(4): 473–482. DOI 10.1111/wej.12059.Open DOISearch in Google Scholar
Stickler M., Alfredsen K.T., Linnansaari T., Fjeldstad H.P., 2010. The influence of dynamic ice formation on hydraulic heterogeneity in steep streams. River Research and Applications 26: 1187–1197. DOI 10.1002/rra.1331.SticklerM.AlfredsenK.T.LinnansaariT.FjeldstadH.P.2010. The influence of dynamic ice formation on hydraulic heterogeneity in steep streams. River Research and Applications26: 1187–1197. DOI 10.1002/rra.1331.Open DOISearch in Google Scholar
Szczerbińska A., 2023. Zmienność zjawisk lodowych w dorzeczu górnej Wisły. Ph. D. thesis, Institute of Geography and Spatial Management, Jagiellonian University, Poland.SzczerbińskaA.2023. Zmienność zjawisk lodowych w dorzeczu górnej Wisły. Ph. D. thesis, Institute of Geography and Spatial Management, Jagiellonian University, Poland.Search in Google Scholar
Theil H., 1992. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In: Raj B., Koerts J. (eds), Henri Theil’s Contributions to Economics and Econometrics. Advanced Studies in Theoretical and Applied Econometrics, vol 23. Springer, Dordrecht. DOI 10.1007/978-94-011-2546-8_20.TheilH.1992. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In: RajB.KoertsJ. (eds), Henri Theil’s Contributions to Economics and Econometrics. Advanced Studies in Theoretical and Applied Econometrics, vol 23. Springer, Dordrecht. DOI 10.1007/978-94-011-2546-8_20.Open DOISearch in Google Scholar
Thellman A., Jankowski K.J., Hayden B., Yang X., Dolan W., Smits A.P., O’Sullivan A.M., 2021. The ecology of river ice. Journal of Geophysical Research: Biogeosciences 126(9): 1–28. DOI 10.1029/2021JG006275.ThellmanA.JankowskiK.J.HaydenB.YangX.DolanW.SmitsA.P.O’SullivanA.M.2021. The ecology of river ice. Journal of Geophysical Research: Biogeosciences126(9): 1–28. DOI 10.1029/2021JG006275.Open DOISearch in Google Scholar
Viviroli D., Dürr H.H., Messerli B., Meybeck M., Weingartner R., 2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research 43: 1–13. DOI 10.1029/2006WR005653.ViviroliD.DürrH.H.MesserliB.MeybeckM.WeingartnerR.2007. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resources Research43: 1–13. DOI 10.1029/2006WR005653.Open DOISearch in Google Scholar
Viviroli D., Weingartner R., 2004. The hydrological significance of mountains: From regional to global scale. Hydrology and Earth System Sciences s 8(6): 1017–1030. DOI 10.5194/hess-8-1017-2004.ViviroliD.WeingartnerR.2004. The hydrological significance of mountains: From regional to global scale. Hydrology and Earth System Sciences s8(6): 1017–1030. DOI 10.5194/hess-8-1017-2004.Open DOISearch in Google Scholar
Wang F., Shao W., Yu H., Kan G., He X., zhang D., Ren M., Wang G., 2020. Re-evaluation of the power of the Mann–Kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science 8(14): 1–12. DOI 10.3389/feart.2020.00014.WangF.ShaoW.YuH.KanG.HeX.zhangD.RenM.WangG.2020. Re-evaluation of the power of the Mann–Kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science8(14): 1–12. DOI 10.3389/feart.2020.00014.Open DOISearch in Google Scholar
Wasserstein R.L., Lazar N.A., 2016. The ASA statement on p-values: Context, process, and purpose. The American Statistician 70(2): 129–133. DOI 10.1080/00031305.2016.1154108.WassersteinR.L.LazarN.A.2016. The ASA statement on p-values: Context, process, and purpose. The American Statistician70(2): 129–133. DOI 10.1080/00031305.2016.1154108.Open DOISearch in Google Scholar
Wasserstein R.L., Schirm A.L., Lazar N.A., 2019. Moving to a world beyond “p < 0.05”. The American Statistician 73: 1–19. DOI 10.1080/00031305.2019.1583913.WassersteinR.L.SchirmA.L.LazarN.A.2019. Moving to a world beyond “p
< 0.05”. The American Statistician73: 1–19. DOI 10.1080/00031305.2019.1583913.Open DOISearch in Google Scholar
Wiejaczka Ł., 2011. Wpływ zbiornika wodnego ∞Klimkówka” na abiotyczne elementy środowiska przyrodniczego w dolinie Ropy. Prace Geograficzne IGiPZ PAN 229.WiejaczkaŁ.2011. Wpływ zbiornika wodnego ∞Klimkówka” na abiotyczne elementy środowiska przyrodniczego w dolinie Ropy. Prace Geograficzne IGiPZ PAN229.Search in Google Scholar
Witkowski K., 2021. Man’s impact on the transformation of channel patterns (the Skawa River, southern Poland). River Research and Applications 37(2): 150–162. DOI 10.1002/rra.3702.WitkowskiK.2021. Man’s impact on the transformation of channel patterns (the Skawa River, southern Poland). River Research and Applications37(2): 150–162. DOI 10.1002/rra.3702.Open DOISearch in Google Scholar
Wohl E.E., 2013. Mountain rivers. Water Resources Monograph 14, American Geophysical Union, Washington DC.WohlE.E.2013. Mountain rivers. Water Resources Monograph 14, American Geophysical Union, Washington DC.Search in Google Scholar
Yang X., Pavelsky T.M., Allen G.H., 2020. The past and future of global river ice. Nature 577(7788): 69–73. DOI 10.1038/s41586-019-1848-1.YangX.PavelskyT.M.AllenG.H.2020. The past and future of global river ice. Nature577(7788): 69–73. DOI 10.1038/s41586-019-1848-1.Open DOISearch in Google Scholar
Yue S., Wang C., 2004. The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management 18(3): 201–218. DOI 10.1023/B:WARM.0000043140.61082.60.YueS.WangC.2004. The Mann–Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management18(3): 201–218. DOI 10.1023/B:WARM.0000043140.61082.60.Open DOISearch in Google Scholar
Yue S., Wang C.Y., 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resources Research 38(6): 1–7. DOI 10.1029/2001WR000861.YueS.WangC.Y.2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann–Kendall test. Water Resources Research38(6): 1–7. DOI 10.1029/2001WR000861.Open DOISearch in Google Scholar