[
Abdelouhed F., Algouti A., Algouti A., Mohammed I. & Mourabit Z., 2021. Contribution of GIS and remote sensing in geological mapping, lineament extractions and hydrothermal alteration minerals mapping using ASTER satellite images: case study of central Jebilets-Morocco. Disaster Advances 14, 15–25.
]Search in Google Scholar
[
Abrams M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. International Journal of Remote Sensing 21, 847–859.
]Search in Google Scholar
[
Admou S., Branquet Y., Badra L., Barbanson L., Outhounjite M., Khalifa A., Zouhair M. & Maacha L., 2018. The hajjar regional transpressive shear zone (Guemassa massif, Morocco): consequences on the deformation of the base-metal massive sulfide ore. Minerals 8, 435.
]Search in Google Scholar
[
Amer R., Kusky T. & El Mezayen A., 2012. Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Advances in Space Research 49, 121–134.
]Search in Google Scholar
[
Baid S., Tabit A., Algouti A., Algouti A., Nafouri I., Souddi S., Aboulfaraj A., Ezzahzi S. & Elghouat A., 2023. Lithological discrimination and mineralogical mapping using Landsat-8 OLI and ASTER remote sensing data: Igoudrane region, jbel saghro, Anti Atlas, Morocco. Heliyon 9.
]Search in Google Scholar
[
Boardman J.W., 1993. Automating spectral unmixing of AVIRIS data using convex geometry concepts. Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Vol. 1, JPL Publication 93–26, pp. 11–14.
]Search in Google Scholar
[
Bouloton J., Gasquet D. & Pin C., 2019. Petrogenesis of the Early-Triassic quartz-monzodiorite dykes from Central Jebilet (Moroccan Meseta): Trace element and Nd-Sr isotope constraints on magma sources, and inferences on their geodynamic context. Journal of African Earth Sciences 149, 451–464.
]Search in Google Scholar
[
Brimhall G.H., Dilles J.H. & Proffett J.M., 2005. The role of geologic mapping in mineral exploration. [In:] M.D. Doggett & J.R. Parry (Eds): Wealth creation in the minerals industry: Integrating science, business, and education. Spec. Publ. 12, pp. 221–241.
]Search in Google Scholar
[
Chen W., Li X., Qin X. & Wang L., 2024. Geological Remote Sensing: An overview BT – Remote sensing intelligent interpretation for geology: From perspective of geological exploration. [In:] W. Chen, X. Li, X. Qin & L. Wang (Eds): Remote sensing intelligent interpretation for geology: From perspective of geological exploration, pp. 1–14, Springer Nature Singapore. https://doi.org/10.1007/978-981-99-8997-3_1
]Search in Google Scholar
[
Green A.A., Berman M., Switzer P. & Craig M.D., 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing 26, 65–74.
]Search in Google Scholar
[
Guanter L., Kaufmann H., Segl K., Foerster S., Rogass C., Chabrillat S., Kuester T., Hollstein A., Rossner G. & Chlebek C., 2015. The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sensing 7, 8830–8857.
]Search in Google Scholar
[
Hewson R.D., Cudahy T.J., Mizuhiko S., Ueda K. & Mauger A.J., 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment 99, 159–172.
]Search in Google Scholar
[
Hung L.Q., Batelaan O. & De Smedt F., 2005. Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, 5983, 182–193.
]Search in Google Scholar
[
Huvelin P., 1977. Etude geologique et gitologique du massif hercynien des Jebilet (Maroc occidental). Notes et Mémoires du Service Géologique du Maroc, 232 bis, 308 pp.
]Search in Google Scholar
[
Laurent D.L.H., 2019. Identification des sites de minéralisation par l’imagerie satellite dans le Hoggar, région d’Issa-lane (Tazrouk, Algérie). Université Abou Bekr Belkaid – Tlemcen, 108 pp.
]Search in Google Scholar
[
Mahdevar M., Ketabi P., Saadatkhah N. & Rahnamarad J., 2014. Application of ASTER SWIR data on detection of alteration zone in the Sheikhabad area, eastern Iran. Arabian Journal of Geosciences 8. https://doi.org/10.1007/s12517-014-1597-2
]Search in Google Scholar
[
Michard A., 1976. Eléments de géologie marocaine. Notes and Memoirs of the Geological Survey of Morocco, 252, 408 pp.
]Search in Google Scholar
[
Ouhoussa L., Ghafiri A., Aissi L. Ben & Es-Sabbar B., 2023. Integrating aster images processing and fieldwork for identification of hydrothermal alteration zones at the oumjrane-boukerzia district, Moroccan Anti-Atlas. Open Journal of Geology 13, 171–188.
]Search in Google Scholar
[
Salehi S., Mielke C., Brogaard Pedersen C. & Dalsenni Olsen S., 2019. Comparison of ASTER and Sentinel-2 spaceborne datasets for geological mapping: a case study from North-East Greenland. Geological Survey of Denmark and Greenland Bulletin 43, 1–6. https://doi.org/10.34194/geusb.v43.4305
]Search in Google Scholar
[
Testa F.J., Villanueva C., Cooke D.R. & Zhang L., 2018. Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER imagery. Remote Sensing 10, 203.
]Search in Google Scholar
[
Yamaguchi Y. & Naito C., 2003. Spectral indices for litho-logic discrimination and mapping by using the ASTER SWIR bands. International Journal of Remote Sensing 24, 4311–4323.
]Search in Google Scholar
[
Zhang T., Yi G., Li H., Wang Z., Tang J., Zhong K., Li Y., Wang Q. & Bie X., 2016. Integrating data of ASTER and Landsat-8 OLI (AO) for hydrothermal alteration mineral mapping in Duolong porphyry Cu-Au deposit, Tibetan Plateau, China. Remote Sensing 8, 890.
]Search in Google Scholar