Otwarty dostęp

Calibrated geochemical ages of the Baltic Artesian Basin groundwater


Zacytuj

Atkinson, A.P., Cartwright, I., Gilfedder, B.S., Cendón, D.I., Unland, N.P. & Hofmann, H., 2014. Using 14C and 3H to understand groundwater flow and re-charge in an aquifer window. Hydrology and Earth System Sciences 18, 4951–4964.10.5194/hess-18-4951-2014 Search in Google Scholar

Babre, A., Kalvāns, A., Popovs, K., Retiķe, I., Dēliņa, A., Vaikmäe, R. & Martma, T., 2016. Pleistocene age paleo-groundwater inferred from water-stable isotope values in the central part of the Baltic Artesian Basin. Isotopes in Environmental and Health Studies 52, 706–725.10.1080/10256016.2016.116841127142454 Search in Google Scholar

Banys, J., Juodkazis, V. & Mokrik, R., 1979. Regional regularities of radiocarbon distribution in groundwaters of the Baltic artesian basin. Water Resources 6, 243–248 (in Russian). Search in Google Scholar

Bethke, C.M. & Johnson, T. M., 2008. Groundwater age and groundwater age dating. Annual Review of Earth and Planetary Sciences 36, 121–152.10.1146/annurev.earth.36.031207.124210 Search in Google Scholar

Ciężkowski, W., Gröning, M., Leśniak, P.M., Weise, S.M. & Zuber, A., 1992. Origin and age of thermal waters in Cieplice Spa, Sudeten, Poland, inferred from isotope, chemical and noble gas data. Journal of Hydrology 140, 89–117.10.1016/0022-1694(92)90236-O Search in Google Scholar

Delina, A., Kalvans, A., Saks, T., Bethers, U. & Valdis, V., 2012. Highlights of groundwater research in the Baltic Artesian Basin. University of Latvia, Riga, 156 pp. Search in Google Scholar

Edmunds, W.M. & Smedley, P.L., 2000. Residence time indicators in groundwater: The East Midlands Triassic sandstone aquifer. Applied Geochemistry 15, 737–752.10.1016/S0883-2927(99)00079-7 Search in Google Scholar

Edmunds, W.M., Guendouz, A.H., Mamou, A., Moulla, A., Shand, P. & Zouari, K., 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Applied Geochemistry 18, 805–822.10.1016/S0883-2927(02)00189-0 Search in Google Scholar

Gerber, C., Vaikmäe, R., Aeschbach, W., Babre, A., Jiang, W., Leuenberger, M., Lu, Z.T., Mokrik, R., Müller, P., Raidla, V., Saks, T., Waber, H.N., Weissbach, T., Zappala, J.C. & Purtschert, R., 2017. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochimica et Cosmochimica Acta 205, 187–210.10.1016/j.gca.2017.01.033 Search in Google Scholar

IAEA, 2013. Isotope methods for dating old groundwater. IAEA, Vienna, 376 pp. Search in Google Scholar

Juodkazis, V., 1980. Formation and consumption of the groundwater resources of Baltic States. Academy of Science, Vilnius, 176 pp. [in Russian] Search in Google Scholar

Juodkazis, V., 2003. Regional hydrogeology foundations. Vilnius University Publishing House, Vilnius, 171 pp. [in Lithuanian] Search in Google Scholar

Juodkazis, V. & Mikalauskas, V., 1994. Groundwater. [in:] Grigelis, A. & Kadūnas, V. (Eds): Geology of Lithuania. Science & Encyclopedia Publishing House, Vilnius, 334–398 [in Lithuanian] Search in Google Scholar

Kotowski, T. & Najman, J., 2015. Results of the determination of He in Cenozoic aquifers using the GC method. Ground Water 53, suppl. 1, 47–55.10.1111/gwat.1231125690932 Search in Google Scholar

Levins, I., Levina, N. & Gavena, I., 1998. Latvian ground-water resources. State Geological Survey, Riga, 24 pp. [in Latvian] Search in Google Scholar

Mace, E., Aalseth, C., Brandenberger, J., Day, A., Hoppe, E., Humble, P., Keillor, M., Kulongoski, J., Overman, C., Panisko, M., Seifert, A., White, S., Wilcox Freeburg, E. & Williams, R., 2017. Methods for using argon-39 to age-date groundwater using ultra-low-background proportional counting. Applied Radiation and Isotopes 126, 9–12.10.1016/j.apradiso.2016.12.03728017500 Search in Google Scholar

Matsumoto, T., Chen, Z., Wei, W., Yang, G.M., Hu, S.M. & Zhang, X., 2018. Application of combined 81Kr and 4He chronometers to the dating of old groundwater in a tectonically active region of the North China Plain. Earth and Planetary Science Letters 493, 208–217.10.1016/j.epsl.2018.04.042 Search in Google Scholar

Mažeika, J., Martma, T., Petrošius, R., Jakimavičiūtė-Maselienė, V. & Skuratovič, Z., 2013. Radiocarbon and other environmental isotopes in the groundwater of the sites for a planned new nuclear power. Radiocarbon 55, 951–962.10.1017/S0033822200058100 Search in Google Scholar

Mokrik, R., 1996. Pecularities of the formation of the isotopic composition of underground waters on the southern slope of the Baltic shield. Geologija 19, 16–25. Search in Google Scholar

Mokrik, R., 1997. The palaeohydrogeology of the Baltic Basin. Vendian and Cambrian. Tartu University Press, 138 pp. Search in Google Scholar

Mokrik, R., 2003. The paleohydrogeology of the Baltic basin. Vilnius University Publishing House, Vilnius, 333 pp. [in Lithuanian] Search in Google Scholar

Mokrik, R. & Samalavičius, V., 2022. Interpretation of the anomalous groundwater chemistry and 234U/238U activity ratio disequilibrium in the northern part of the Baltic region. Lithuanian Journal of Physics 62, 21–43.10.3952/physics.v62i1.4645 Search in Google Scholar

Mokrik, R. & Vaikmäe, R., 1988. Paleohydrogeological aspects of Cm-V groundwater isotope content formation in Baltic region. in: Isotope geochemistry research in Baltic and Belarus, pp. 133–143 [in Russian] Search in Google Scholar

Mokrik, R., Juodkazis, V., Štuopis, A. & Mažeika, J., 2014. Isotope geochemistry and modelling of the multi-aquifer system in the eastern part of Lithuania. Hydrogeology Journal 22, 925–941.10.1007/s10040-014-1120-6 Search in Google Scholar

Mokrik, R., Mažeika, J., Baublyte, A. & Martma, T., 2009. The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania. Hydrogeology Journal 17, 871–889.10.1007/s10040-008-0403-1 Search in Google Scholar

Mokrik, R., Samalavičius, V., Bujanauskas, M. & Gregorauskas, M., 2021. Environmental isotopes and noble gas ages of the deep groundwater with coupled flow modelling in the Baltic artesian basin. Lithuanian Journal of Physics 61, 53–65.10.3952/physics.v61i1.4407 Search in Google Scholar

Morgenstern, U. & Daughney, C.J., 2012. Groundwater age for identification of baseline groundwater quality and impacts of land-use intensification - The National Groundwater Monitoring Programme of New Zealand. Hydrogeology Journal 456–457, 79–93.10.1016/j.jhydrol.2012.06.010 Search in Google Scholar

Pärn, J., Raidla, V., Vaikmäe, R., Martma, T., Ivask, J., Mokrik, R. & Erg, K., 2016. The recharge of glacial meltwater and its influence on the geochemical evolution of groundwater in the Ordovician-Cambrian aquifer system, northern part of the Baltic Artesian Basin. Applied Geochemistry 72, 125–135.10.1016/j.apgeochem.2016.07.007 Search in Google Scholar

Pärn, J., Affolter, S., Ivask, J., Johnson, S., Kirsimäe, K., Leuenberger, M., Martma, T., Raidla, V., Schloemer, S., Sepp, H., Vaikmäe, R. & Walraevens, K., 2018. Redox zonation and organic matter oxidation in palaeogroundwater of glacial origin from the Baltic Arte-sian Basin. Chemical Geology 488, 149–161.10.1016/j.chemgeo.2018.04.027 Search in Google Scholar

Pärn, J., Walraevens, K., van Camp, M., Raidla, V., Aeschbach, W., Friedrich, R., Ivask, J., Kaup, E., Mart-ma, T., Mažeika, J., Mokrik, R., Weissbach, T. & Vaikmäe, R., 2019. Dating of glacial palaeogroundwater in the Ordovician-Cambrian aquifer system, northern Baltic Artesian Basin. Applied Geochemistry 102, 64–76.10.1016/j.apgeochem.2019.01.004 Search in Google Scholar

Paukstys, B. & Narbutas, V., 1996. Gypsum karst of the Baltic republics. International Journal of Speleology 25, 279–284.10.5038/1827-806X.25.3.21 Search in Google Scholar

Paukstys, B., Cooper, A.H. & Arustiene, J., 1999. Planning for gypsum geohazards in Lithuania and England. Engineering Geology 52, 93–103.10.1016/S0013-7952(98)00061-1 Search in Google Scholar

Purtschert, R., Yokochi, R., Jiang, W., Lu, Z.T., Mueller, P., Zappala, J., van Heerden, E., Cason, E., Lau, M., Kieft, T.L., Gerber, C., Brennwald, M.S. & Onstott, T.C., 2021. Underground production of 81Kr detected in subsurface fluids. Geochimica et Cosmochimica Acta 295, 65–79.10.1016/j.gca.2020.11.024 Search in Google Scholar

Raidla, V., Kirsimäe, K., Vaikmäe, R., Kaup, E. & Martma, T., 2012. Carbon isotope systematics of the Cambrian-Vendian aquifer system in the northern Baltic Basin: Implications to the age and evolution of ground-water. Applied Geochemistry 27, 2042–2052.10.1016/j.apgeochem.2012.06.005 Search in Google Scholar

Raidla, V., Pärn, J., Aeschbach, W., Czuppon, G., Ivask, J., Kiisk, M., Mokrik, R., Samalavičius, V., Suursoo, S., Tarros, S. & Weissbach, T., 2019a. Intrusion of saline water into a coastal aquifer containing palaeoground-water in the Viimsi Peninsula in Estonia. Geosciences 47, 9010047.10.3390/geosciences9010047 Search in Google Scholar

Raidla, V., Pärn, J., Schloemer, S., Aeschbach, W., Czuppon, G., Ivask, J., Marandi, A., Sepp, H., Vaikmäe, R. & Kirsimäe, K., 2019b. Origin and formation of methane in groundwater of glacial origin from the Cambrian-Vendian aquifer system in Estonia. Geochimica et Cosmochimica Acta 251, 247–264.10.1016/j.gca.2019.02.029 Search in Google Scholar

Samalavičius, V., 2022. The groundwater isotope-geochemistry anomalies formation features in The Baltic Artesian Basin. Vilnius University, 152 pp. Search in Google Scholar

Samalavičius, V. & Mokrik, R., 2016. Tritium activity trend formation in groundwater of Quaternary aquifer system, south-eastern Lithuania. Geologija. Geografija 2, 173–181.10.6001/geol-geogr.v2i4.3399 Search in Google Scholar

Samalavičius, V. & Mokrik, R., 2021. Noble gas characteristics of the Baltic Artesian Basin groundwater. [in:] Bioateitis, gamtos ir gyvybės mokslų perspektyvos, 46 pp. (in Lithuanian) Search in Google Scholar

Sterckx, A., Lemieux, J.M. & Vaikmäe, R., 2017. Representing glaciations and subglacial processes in hydro-geological models: A numerical investigation. Geofluids 2017, 4598902.10.1155/2017/4598902 Search in Google Scholar

Sterckx, A., Lemieux, J.-M. & Vaikmäe, R., 2018. Assessment of paleo-recharge under the Fennoscandian Ice Sheet and its impact on regional groundwater flow in the northern Baltic Artesian Basin using a numerical model. Hydrogeology Journal 26, 2793–2810.10.1007/s10040-018-1838-7 Search in Google Scholar

Štuopis, A., Juodkazis, V. & Mokrik, R., 2012. The Quaternary aquifer system flow model by chemical and tritium isotope data: Case of south-east Lithuania. Baltica 25, 91–98.10.5200/baltica.2012.25.09 Search in Google Scholar

Sturchio, N.C., Du, X., Purtschert, R., Lehmann, B.E., Sultan, M., Patterson, L.J., Lu, Z.-T., Müller, P., Bigler, T., Bailey, K., O’Connor, T.P., Young, L., Lorenzo, R., Becker, R., el Alfy, Z., el Kaliouby, B., Dawood, Y. & Abdallah, A.M.A., 2004. One million year old ground-water in the Sahara revealed by krypton-81 and chlorine-36. Geophysical Research Letters 31, 019234.10.1029/2003GL019234 Search in Google Scholar

Sturchio, N.C., Kuhlman, K.L., Yokochi, R., Probst, P.C., Jiang, W., Lu, Z.T., Mueller, P. & Yang, G.M., 2014. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico. Journal of Contaminant Hydrology 160, 12–20.10.1016/j.jconhyd.2014.02.00224594409 Search in Google Scholar

Torgersen, T. & Stute, M., 2013. Helium (and other noble gases) as a tool for the understanding long time-scale groundwater transport. [in:] Isotope methods for dating old groundwater. International Atomic Energy Agency, Vienna, 376. Search in Google Scholar

Vaikmäe, R., Vallner, L., Loosli, H.H., Blaser, P.C. & Juil-lard-Tardent, M., 2001. Palaeogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia. Geological Society, London, Special Publications 189, 17–27.10.1144/GSL.SP.2001.189.01.03 Search in Google Scholar

Vaikmäe, R., Martma, T., Ivask, J., Kaup, E., Raidla, V., Rajamäe, R., Vallner, L., Mokrik, R., Samalavičius, V., Kalvāns, A., Babre, A., Marandi, A., Hints, O. & Pärn, J., 2020. Baltic groundwater isotope-geochemistry database. https://doi.org/10.15152/GEO.488. Search in Google Scholar

Virbulis, J., Bethers, U., Saks, T., Sennikovs, J. & Timuhins, A., 2013. Hydrogeological model of the Baltic Artesian Basin. Hydrogeology Journal 21, 845–862.10.1007/s10040-013-0970-7 Search in Google Scholar

Winsberg, L., 1956. The production of chlorine-39 in the lower atmosphere by cosmic radiation. Geochimica et Cosmochimica Acta 9, 183–18910.1016/0016-7037(56)90048-5 Search in Google Scholar

Yezhova, M., Polyakov, V., Tkachenko, A., Savitski, L. & Belkina, V., 1996. Paleowaters of North Estonia and their influence on changes of resources and quality of fresh groundwaters of large coastal water supplies. Geology 19, 37–40.10.1016/S0262-1762(99)81256-5 Search in Google Scholar

Zuber, A., Weise, S.M., Osenbrück, K., Grabczak, J. & Ciężkowski, W., 1995. Age and recharge area of thermal waters in Lądek Spa (Sudeten, Poland) deduced from environmental isotope and noble gas data. Applied Geochemistry 167, 327–349.10.1016/0022-1694(94)02587-2 Search in Google Scholar

Zuber, A., Weise, S.M., Osenbriick, K. & Mateńko, T., 1997. Origin and age of saline waters in Busko Spa (Southern Poland) determined by isotope, noble gas and hydrochemical methods: evidence of interglacial and pre-Quaternary warm climate recharges. Applied Geochemistry 12, 643–660.10.1016/S0883-2927(97)00020-6 Search in Google Scholar

Zuzevičius, A., Mažeika, J. & Baltrūnas, V., 2007. A model of brakish groundwater formation in the Nemunas River Valley. Geologija 60, 63–75. Search in Google Scholar

eISSN:
2080-6574
Język:
Angielski
Częstotliwość wydawania:
3 razy w roku
Dziedziny czasopisma:
Geosciences, Geophysics, Geology and Mineralogy, other