Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and TechnologyKraków, Poland
Faculty of Chemistry, Jagiellonian UniversityKraków, Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Chen H., Gao D., Wang B., Zhao R., Guan M., Zheng L., Zhou X., Chai Z., Feng W., Graphene oxide as an anaerobic membrane scaffold and antagonistic effects against pathogenic E. coli and S. aureus, Nanotechnology, 2014, 25 (16), DOI: 10.1088/0957-4484/25/16/165101.Search in Google Scholar
Ciołek L., Karaś J., Olszyna A.R., Zaczyńska E., Czarny A., Żywicka B., Szamałek K., In Vitro Studies of Antibacterial Activity of Bioglasses Releasing Ag+, Key Eng. Mater., 2011, 493–494, 108–113, DOI: 10.4028/www.scientific.net/kem.493-94.108.Search in Google Scholar
Dias A.M., da Silva F.G., Monteiro A.P.F., Pinzón-García A.D., Sinisterra R.D., Cortés M.E., Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease, Mater Sci. Eng. C. Mater., Biol. Appl., 2019, 103, 109798, DOI: 10.1016/j.msec.2019.109798.Search in Google Scholar
Dziadek M., Zagrajczuk B., Menaszek E., Wegrzynowicz A., Pawlik J., Cholewa-Kowalska K., Gel-derived SiO2–CaO– P2O5bioactive glasses and glass-ceramics modified by SrO addition, Ceram. Int., 2016, 42 (5), 58, 42–57, DOI: 10.1016/j.ceramint.2015.12.128.Search in Google Scholar
Fonseca G.F.d., Avelino S.d.O.M., Mello D.d.C.R., Prado R.F.d., Campos T.M.B., Vasconcellos L.M.R.d., Triches E.d.S., Borges A.L.S., Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance, J. Mater. Sci. Mater. Med., 2020, 31 (41), DOI: 10.1007/s10856-020-06382-w.Search in Google Scholar
Fredenberg S., Wahlgren M., Reslow M., Axelsson A., The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – A review, Int. J. Pharm., 2011, 415 (1–2), 34–52, https://doi.org/10.1016/j.ijpharm.2011.05.049.Search in Google Scholar
Han J.K., Marple B.F., Smith T.L., Murr A.H., Lanier B.J., Stambaugh J.W., Mugglin A.S., Effect of steroid-releasing sinus implants on postoperative medical and surgical interventions: an efficacy meta-analysis, Int. Forum Allergy and Rh., 2012 (2), 271–279, DOI: 10.1002/alr.21044.Search in Google Scholar
Hu S., Chang J., Liu M., Ning C., Study on antibacterial effect of 45S5 Bioglass®, J. Mater Sci. Mater Med., 2009, 20, 281–286, DOI: 10.1007/s10856-008-3564-5.Search in Google Scholar
Ji H., Sun H., Qu X., Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges, Adv. Drug. Deliv. Rev., 2016, 105 (Pt B), 176–189, DOI:10.1016/j.addr.2016.04.009.Search in Google Scholar
Karatas A., Pehlivanoglu F., Salviz M., Kuvat N., Cebi I.T., Dikmen B., Sengoz G., The effects of the time of intranasal splinting on bacterial colonization, postoperative complications, and patient discomfort after septoplasty operations, Braz. J. Otorhinolar., 2016, 82 (6), 654–661, DOI:10.1016/j.bjorl.2015.11.008.Search in Google Scholar
Kurantowicz N., Sawosz E., Jaworski S., Kutwin M., Strojny B., Wierzbicki M., Szeliga J., Hotowy A., Lipińska L., Koziński R., Jagiełło J., Chwalibog A., Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica, Nanoscale Res. Lett., 2015, 10 (23), DOI: 10.1186/s11671-015-0749-y.Search in Google Scholar
Lina G., Boutite F., Tristan A., Bes M., Etienne J., Vandenesch F., Bacterial Competition for Human Nasal Cavity Colonization: Role of Staphylococcal agr Alleles, Appl. Environ. Microb., 2003, 69 (1), 18–23, DOI: 10.1128/AEM.69.1.18-23.200.Search in Google Scholar
Liu D., Nie W., Li D., Wang W., Zheng L., Zhang J., Zhang J., Peng C., Mo X., He C., 3D printed PCL/SrHA scaffold for enhanced bone regeneration, Chem. Eng. J., 2019, 362 (15), 269–279, DOI:10.1016/j.cej.2019.01.015.Search in Google Scholar
Liu S., Zeng T.H., Hofmann M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 2011, 5 (9), 6971–6980.Search in Google Scholar
Liu Y., He L., Mustapha A., Li H., Hu Z., Lin M., Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7, J. Appl. Microbiol., 2009, 107, 1193–1201, DOI: 10.1111/j.1365-2672.2009.04303.x.Search in Google Scholar
Ma J., Zhang J., Xiong Z., Yong Y., Zhao X.S., Preparation, characterization and antibacterial properties of silver-modified graphene oxide, J. Mater Chem., 2011, 21, 3350–3352.Search in Google Scholar
Mangadlao J.D., Santos C.M., Felipe M.J.L., Leon A.C.C., Rodrigues D.F., Advincula R.C., On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films, Chem. Commun., 2015, 51 (14), 2886–2889.Search in Google Scholar
Miola M., Verné E., Vitale-Brovarone C., Baino F, Antibacterial Bioglass-Derived Scaffolds: Innovative Synthesis Approach and Characterization, Int. J. Appl. Glass Sci., 2016, 7, 238–247, DOI:10.1111/ijag.12209.Search in Google Scholar
Rajzer I., Kurowska A., Jabłoński A., Kwiatkowski R., Piekarczyk W, Hajduga M.B., Kopeć J., Sidzina M., Menaszek E., Scaffolds modified with graphene as future implants for nasal cartilage, J. Mater. Sci., 2020, 55 (9), 4030–4042.Search in Google Scholar
Rajzer I., Dziadek M., Kurowska A., Cholewa-Kowalska K., Ziąbka M., Menaszek E., Douglas T.E.L., Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment, J. Mater. Sci. Mater. Med, 2019, 30 (7), 80, DOI: 10.1007/s10856-019-6280-4.Search in Google Scholar
Rapacz-Kmita A., Szaraniec B., Mikołajczyk M., Stodolak-Zych E., Dzierzkowska E., Gajek M., Dudek P., Multifunctional biodegradable polymer/clay nanocomposites with antibacterial properties in drug delivery systems, Acta Bioeng. Biomech., 2020, 22 (2), DOI: 10.37190/abb-01523-2019-03Search in Google Scholar
Rohr N., Nebe J.B., Schmidli F., Müller P., Weber M., Fischer H., Fischer J., Influence of bioactive glass-coating of zirconia implant surfaces on human osteoblast behavior in vitro, Dent. Mater., 2019, 35 (6), 862–870, DOI:10.1016/j.dental.2019.02.029.Search in Google Scholar
Szponder T., Stodolak-Zych E., Polkowska I., Sobczyńska-Rak A., Impact of a pulsed magnetic field on selected polymer implant materials, Acta Bioeng. Biomech., 2019, 21 (1), DOI: 10.5277/ABB-01253-2018-04.Search in Google Scholar
Turek A., Stoklosa K., Borecka A., Paul-Samojedny M., Kaczmarczyk B., Marcinkowski A., Kasperczyk J., Designing Biodegradable Wafers Based on Poly(L-lactide-coglycolide) and Poly(glycolide-co-ε-caprolactone) for the Prolonged and Local Release of Idarubicin for the Therapy of Glioblastoma Multiforme, Pharm. Res., 2020, 37 (5), 90, DOI: 10.1007/s11095-020-02810-2.Search in Google Scholar
Woodruff M.A., Hutmacher D.W., The return of a forgotten polymer – Polycaprolactone in the 21st century, Prog. Polym. Sci., 2010, 35 (10), 1217–1256.Search in Google Scholar
Wu F., Wei J., Liu C., O’Neill B., Ngothai Y., Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering, Compos. Part B-Eng., 2012, 43 (5), 2192–2197.Search in Google Scholar
Zanni E., Bruni E., Chandraiahgari C.R., De Bellis,G., Santangelo M.G., Leone M., Bregnocchi A., Mancini P., Sarto M.S., Uccelletti D., Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches, J. Nanobiotechnol., 2017, 15, 57, DOI: 10.1186/s12951-017-0291-4.Search in Google Scholar
Zhan S., Zhu D., Ma S., Yu W., Jia Y., Li Y., Yu H., Shen Z., Highly efficient removal of pathogenic bacteria with magnetic graphene composite, ACS Appl. Mater Interfaces, 2015, 7 (7), 4290–4298.Search in Google Scholar