Uneingeschränkter Zugang

Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass

, , , , , , , ,  und   
02. Mai 2021

Zitieren
COVER HERUNTERLADEN

Chen H., Gao D., Wang B., Zhao R., Guan M., Zheng L., Zhou X., Chai Z., Feng W., Graphene oxide as an anaerobic membrane scaffold and antagonistic effects against pathogenic E. coli and S. aureus, Nanotechnology, 2014, 25 (16), DOI: 10.1088/0957-4484/25/16/165101. Search in Google Scholar

Ciołek L., Karaś J., Olszyna A.R., Zaczyńska E., Czarny A., Żywicka B., Szamałek K., In Vitro Studies of Antibacterial Activity of Bioglasses Releasing Ag+, Key Eng. Mater., 2011, 493–494, 108–113, DOI: 10.4028/www.scientific.net/kem.493-94.108. Search in Google Scholar

Dias A.M., da Silva F.G., Monteiro A.P.F., Pinzón-García A.D., Sinisterra R.D., Cortés M.E., Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease, Mater Sci. Eng. C. Mater., Biol. Appl., 2019, 103, 109798, DOI: 10.1016/j.msec.2019.109798. Search in Google Scholar

Dziadek M., Zagrajczuk B., Menaszek E., Wegrzynowicz A., Pawlik J., Cholewa-Kowalska K., Gel-derived SiO2–CaO– P2O5 bioactive glasses and glass-ceramics modified by SrO addition, Ceram. Int., 2016, 42 (5), 58, 42–57, DOI: 10.1016/j.ceramint.2015.12.128. Search in Google Scholar

Fonseca G.F.d., Avelino S.d.O.M., Mello D.d.C.R., Prado R.F.d., Campos T.M.B., Vasconcellos L.M.R.d., Triches E.d.S., Borges A.L.S., Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance, J. Mater. Sci. Mater. Med., 2020, 31 (41), DOI: 10.1007/s10856-020-06382-w. Search in Google Scholar

Fredenberg S., Wahlgren M., Reslow M., Axelsson A., The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – A review, Int. J. Pharm., 2011, 415 (1–2), 34–52, https://doi.org/10.1016/j.ijpharm.2011.05.049. Search in Google Scholar

Han J.K., Marple B.F., Smith T.L., Murr A.H., Lanier B.J., Stambaugh J.W., Mugglin A.S., Effect of steroid-releasing sinus implants on postoperative medical and surgical interventions: an efficacy meta-analysis, Int. Forum Allergy and Rh., 2012 (2), 271–279, DOI: 10.1002/alr.21044. Search in Google Scholar

Hu S., Chang J., Liu M., Ning C., Study on antibacterial effect of 45S5 Bioglass®, J. Mater Sci. Mater Med., 2009, 20, 281–286, DOI: 10.1007/s10856-008-3564-5. Search in Google Scholar

Ji H., Sun H., Qu X., Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges, Adv. Drug. Deliv. Rev., 2016, 105 (Pt B), 176–189, DOI:10.1016/j.addr.2016.04.009. Search in Google Scholar

Karatas A., Pehlivanoglu F., Salviz M., Kuvat N., Cebi I.T., Dikmen B., Sengoz G., The effects of the time of intranasal splinting on bacterial colonization, postoperative complications, and patient discomfort after septoplasty operations, Braz. J. Otorhinolar., 2016, 82 (6), 654–661, DOI:10.1016/j.bjorl.2015.11.008. Search in Google Scholar

Kurantowicz N., Sawosz E., Jaworski S., Kutwin M., Strojny B., Wierzbicki M., Szeliga J., Hotowy A., Lipińska L., Koziński R., Jagiełło J., Chwalibog A., Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica, Nanoscale Res. Lett., 2015, 10 (23), DOI: 10.1186/s11671-015-0749-y. Search in Google Scholar

Lina G., Boutite F., Tristan A., Bes M., Etienne J., Vandenesch F., Bacterial Competition for Human Nasal Cavity Colonization: Role of Staphylococcal agr Alleles, Appl. Environ. Microb., 2003, 69 (1), 18–23, DOI: 10.1128/AEM.69.1.18-23.200. Search in Google Scholar

Liu D., Nie W., Li D., Wang W., Zheng L., Zhang J., Zhang J., Peng C., Mo X., He C., 3D printed PCL/SrHA scaffold for enhanced bone regeneration, Chem. Eng. J., 2019, 362 (15), 269–279, DOI:10.1016/j.cej.2019.01.015. Search in Google Scholar

Liu S., Zeng T.H., Hofmann M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 2011, 5 (9), 6971–6980. Search in Google Scholar

Liu Y., He L., Mustapha A., Li H., Hu Z., Lin M., Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7, J. Appl. Microbiol., 2009, 107, 1193–1201, DOI: 10.1111/j.1365-2672.2009.04303.x. Search in Google Scholar

Ma J., Zhang J., Xiong Z., Yong Y., Zhao X.S., Preparation, characterization and antibacterial properties of silver-modified graphene oxide, J. Mater Chem., 2011, 21, 3350–3352. Search in Google Scholar

Mangadlao J.D., Santos C.M., Felipe M.J.L., Leon A.C.C., Rodrigues D.F., Advincula R.C., On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films, Chem. Commun., 2015, 51 (14), 2886–2889. Search in Google Scholar

Miola M., Verné E., Vitale-Brovarone C., Baino F, Antibacterial Bioglass-Derived Scaffolds: Innovative Synthesis Approach and Characterization, Int. J. Appl. Glass Sci., 2016, 7, 238–247, DOI:10.1111/ijag.12209. Search in Google Scholar

Rajzer I., Kurowska A., Jabłoński A., Kwiatkowski R., Piekarczyk W, Hajduga M.B., Kopeć J., Sidzina M., Menaszek E., Scaffolds modified with graphene as future implants for nasal cartilage, J. Mater. Sci., 2020, 55 (9), 4030–4042. Search in Google Scholar

Rajzer I., Dziadek M., Kurowska A., Cholewa-Kowalska K., Ziąbka M., Menaszek E., Douglas T.E.L., Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment, J. Mater. Sci. Mater. Med, 2019, 30 (7), 80, DOI: 10.1007/s10856-019-6280-4. Search in Google Scholar

Rapacz-Kmita A., Szaraniec B., Mikołajczyk M., Stodolak-Zych E., Dzierzkowska E., Gajek M., Dudek P., Multifunctional biodegradable polymer/clay nanocomposites with antibacterial properties in drug delivery systems, Acta Bioeng. Biomech., 2020, 22 (2), DOI: 10.37190/abb-01523-2019-03 Search in Google Scholar

Rohr N., Nebe J.B., Schmidli F., Müller P., Weber M., Fischer H., Fischer J., Influence of bioactive glass-coating of zirconia implant surfaces on human osteoblast behavior in vitro, Dent. Mater., 2019, 35 (6), 862–870, DOI:10.1016/j.dental.2019.02.029. Search in Google Scholar

Szponder T., Stodolak-Zych E., Polkowska I., Sobczyńska-Rak A., Impact of a pulsed magnetic field on selected polymer implant materials, Acta Bioeng. Biomech., 2019, 21 (1), DOI: 10.5277/ABB-01253-2018-04. Search in Google Scholar

Turek A., Stoklosa K., Borecka A., Paul-Samojedny M., Kaczmarczyk B., Marcinkowski A., Kasperczyk J., Designing Biodegradable Wafers Based on Poly(L-lactide-coglycolide) and Poly(glycolide-co-ε-caprolactone) for the Prolonged and Local Release of Idarubicin for the Therapy of Glioblastoma Multiforme, Pharm. Res., 2020, 37 (5), 90, DOI: 10.1007/s11095-020-02810-2. Search in Google Scholar

Woodruff M.A., Hutmacher D.W., The return of a forgotten polymer – Polycaprolactone in the 21st century, Prog. Polym. Sci., 2010, 35 (10), 1217–1256. Search in Google Scholar

Wu F., Wei J., Liu C., O’Neill B., Ngothai Y., Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering, Compos. Part B-Eng., 2012, 43 (5), 2192–2197. Search in Google Scholar

Xiaoyi X., Qingbiao Y., Yongzhi W., Haijun Y., Xuesi C., Xiabin J., Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles, Eur. Polym. J., 2016, 42 (9), 2081–2087, DOI:10.1016/j.eurpolymj.2006.03.032. Search in Google Scholar

Zanni E., Bruni E., Chandraiahgari C.R., De Bellis,G., Santangelo M.G., Leone M., Bregnocchi A., Mancini P., Sarto M.S., Uccelletti D., Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches, J. Nanobiotechnol., 2017, 15, 57, DOI: 10.1186/s12951-017-0291-4. Search in Google Scholar

Zhan S., Zhu D., Ma S., Yu W., Jia Y., Li Y., Yu H., Shen Z., Highly efficient removal of pathogenic bacteria with magnetic graphene composite, ACS Appl. Mater Interfaces, 2015, 7 (7), 4290–4298. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Zellbiologie, Biomechanik, Medizin, Biomedizinische Technik, Materialwissenschaft, Bio- und Naturmaterialien