Accesso libero

Biomaterial-Based Scaffolds as Carriers of Topical Antimicrobials for Bone Infection Prophylaxis

  
18 giu 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Afewerki S, Bassous N, Harb S, Palo-Nieto C, Ruiz-Esparza GU, Marciano FR, Webster TJ, Furtado ASA, Lobo AO. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine. 2020 Feb;24:102143. https://doi.org/10.1016/j.nano.2019.102143 Afewerki S Bassous N Harb S Palo-Nieto C Ruiz-Esparza GU Marciano FR Webster TJ Furtado ASA Lobo AO. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications . Nanomedicine . 2020 Feb ; 24 : 102143 . https://doi.org/10.1016/j.nano.2019.102143 Search in Google Scholar

Agnihotri S, Dhiman NK. Development of nano-antimicrobial biomaterials for biomedical applications. In: Tripathi A, Melo JS, editors. Advances in Biomaterials for Biomedical Applications. Singapore: Springer Nature; 2017. p. 479–545. https://doi.org/10.1007/978-981-10-3328-5_12 Agnihotri S Dhiman NK. Development of nano-antimicrobial biomaterials for biomedical applications . In: Tripathi A Melo JS , editors. Advances in Biomaterials for Biomedical Applications . Singapore : Springer Nature ; 2017 . p. 479 545 . https://doi.org/10.1007/978-981-10-3328-5_12 Search in Google Scholar

Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio. 2019 Jun;2:100017. https://doi.org/10.1016/j.mtbio.2019.100017 Ahmed W Zhai Z Gao C. Adaptive antibacterial biomaterial surfaces and their applications . Mater Today Bio . 2019 Jun ; 2 : 100017 . https://doi.org/10.1016/j.mtbio.2019.100017 Search in Google Scholar

Al-Madboly LA, Aboulmagd A, El-Salam MA, Kushkevych I, El-Morsi RM. Microbial enzymes as powerful natural anti-biofilm candidates. Microb Cell Fact. 2024 Dec;23(1):343. https://doi.org/10.1186/s12934-024-02610-y Al-Madboly LA Aboulmagd A El-Salam MA Kushkevych I El-Morsi RM. Microbial enzymes as powerful natural anti-biofilm candidates . Microb Cell Fact . 2024 Dec ; 23 ( 1 ): 343 . https://doi.org/10.1186/s12934-024-02610-y Search in Google Scholar

Angulo-Pineda C, Srirussamee K, Palma P, Fuenzalida VM, Cartmell SH, Palza H. Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials. 2020 Feb;10(3):428. https://doi.org/10.3390/nano10030428 Angulo-Pineda C Srirussamee K Palma P Fuenzalida VM Cartmell SH Palza H. Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications . Nanomaterials . 2020 Feb ; 10 ( 3 ): 428 . https://doi.org/10.3390/nano10030428 Search in Google Scholar

Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, et al. Highlights on advancing frontiers in tissue engineering. Tissue Eng Part B Rev. 2022 Jun;28(3):633–664. https://doi.org/10.1089/ten.TEB.2021.0012 Ashammakhi N GhavamiNejad A Tutar R Fricker A Roy I Chatzistavrou X Hoque Apu E Nguyen KL Ahsan T Highlights on advancing frontiers in tissue engineering . Tissue Eng Part B Rev . 2022 Jun ; 28 ( 3 ): 633 664 . https://doi.org/10.1089/ten.TEB.2021.0012 Search in Google Scholar

Aslam Khan MU, Haider A, Abd Razak SI, Abdul Kadir MR, Haider S, Shah SA, Hasan A, Khan R, Khan SD, Shakir I. Arabi-noxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing. J Tissue Eng Regen Med. 2021b Apr;15(4):322–335. https://doi.org/10.1002/term.3168 Aslam Khan MU Haider A Abd Razak SI Abdul Kadir MR Haider S Shah SA Hasan A Khan R Khan SD Shakir I. Arabi-noxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing . J Tissue Eng Regen Med . 2021b Apr ; 15 ( 4 ): 322 335 . https://doi.org/10.1002/term.3168 Search in Google Scholar

Aslam Khan MU, Haider S, Haider A, Abd Razak SI, Abdul Kadir MR, Shah SA, Javed A, Shakir I, Al-Zahrani AA. Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomposite scaffold for bone tissue engineering, Arab. J. Chem. 2021a Dec;14(2):14102924, https://doi.org/10.1016/j.arabjc.2020.102924 Aslam Khan MU Haider S Haider A Abd Razak SI Abdul Kadir MR Shah SA Javed A Shakir I Al-Zahrani AA. Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomposite scaffold for bone tissue engineering, Arab . J. Chem . 2021a Dec ; 14 ( 2 ): 14102924 , https://doi.org/10.1016/j.arabjc.2020.102924 Search in Google Scholar

Atkinson I, Seciu-Grama AM, Serafim A, Petrescu S, Voicescu M, Anghel EM, Marinescu C, Mitran RA, Mocioiu OC, Cusu JP, et al. Bioinspired 3D scaffolds with antimicrobial, drug delivery, and osteogenic functions for bone regeneration. Drug Deliv Transl Res. 2024 Apr;14(4):1028–1047. https://doi.org/10.1007/s13346-023-01448-y Atkinson I Seciu-Grama AM Serafim A Petrescu S Voicescu M Anghel EM Marinescu C Mitran RA Mocioiu OC Cusu JP Bioinspired 3D scaffolds withanti microbial drug delivery and osteogenic functions for bone regeneration . Drug Deliv Transl Res . 2024 Apr ; 14 ( 4 ): 1028 1047 . https://doi.org/10.1007/s13346-023-01448-y Search in Google Scholar

Bakhsheshi-Rad HR, Chen XR, Ismail AF, Aziz A, Hamzah E, Najafinezhad A. A new multifunctional monticellite-ciprofloxacin scaffold: Preparation, bioactivity, biocompatibility, and antibacterial properties. Mater Chem Phys.2019 Sep;222:118–131 https://doi.org/10.1016/j.matchemphys.2018.09.054 Bakhsheshi-Rad HR Chen XR Ismail AF Aziz A Hamzah E Najafinezhad A. A new multifunctional monticellite-ciprofloxacin scaffold: Preparation, bioactivity, biocompatibility, and antibacterial properties . Mater Chem Phys . 2019 Sep ; 222 : 118 131 https://doi.org/10.1016/j.matchemphys.2018.09.054 Search in Google Scholar

Barros J, Monteiro FJ, Ferraz MP. Bioengineering approaches to fight against orthopedic biomaterials related-infections. Int J Mol Sci. 2022 Oct;23(19):11658. https://doi.org/10.3390/ijms231911658 Barros J Monteiro FJ Ferraz MP. Bioengineering approaches to fight against orthopedic biomaterials related-infections . Int J Mol Sci . 2022 Oct ; 23 ( 19 ): 11658 . https://doi.org/10.3390/ijms231911658 Search in Google Scholar

Biomaterials Market. Industry analysis and forecast (2024–2030) trends, statistics, report ID: SMR_1143, 2023 [Internet]. Pune (India): Stellar Market Research [cited 2025 February 14]. Available from https://www.stellarmr.com/report/Biomaterials-Market/1143 Biomaterials Market Industry analysis and forecast (2024–2030) trends, statistics, report ID: SMR_1143, 2023 [Internet] . Pune (India) : Stellar Market Research [cited 2025 February 14 ]. Available from https://www.stellarmr.com/report/Biomaterials-Market/1143 Search in Google Scholar

Budiatin AS, Gani MA, Samirah, Ardianto C, Raharjanti AM, Septiani I, Putri NPKP, Khotib J. Bovine hydroxyapatite-based bone scaffold with gentamicin accelerates vascularization and remodeling of bone defect. Int J Biomater. 2021 May;2021:5560891. https://doi.org/10.1155/2021/5560891 Budiatin AS Gani MA Samirah Ardianto C Raharjanti AM Septiani I Putri NPKP Khotib J. Bovine hydroxyapatite-based bone scaffold with gentamicin accelerates vascularization and remodeling of bone defect . Int J Biomater . 2021 May ; 2021 : 5560891 . https://doi.org/10.1155/2021/5560891 Search in Google Scholar

Cabral CS, Miguel SP, de Melo-Diogo D, Louro RO, Correia IJ. Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration. Carbon. 2019 Feb;146:513–523. https://doi.org/10.1016/j.carbon.2019.01.100 Cabral CS Miguel SP de Melo-Diogo D Louro RO Correia IJ. Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration . Carbon . 2019 Feb ; 146 : 513 523 . https://doi.org/10.1016/j.carbon.2019.01.100 Search in Google Scholar

Cao D, Xu Z, Chen Y, Ke Q, Zhang C, Guo Y. Ag-loaded MgSr-Fe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):863–873. https://doi.org/10.1002/jbm.b.33900 Cao D Xu Z Chen Y Ke Q Zhang C Guo Y. Ag-loaded MgSr-Fe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue . J Biomed Mater Res B Appl Biomater . 2018 Feb ; 106 ( 2 ): 863 873 . https://doi.org/10.1002/jbm.b.33900 Search in Google Scholar

Caplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019 Jul;93:2–11. https://doi.org/10.1016/j.actbio.2019.01.015 Caplin JD García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models . Acta Biomater . 2019 Jul ; 93 : 2 11 . https://doi.org/10.1016/j.actbio.2019.01.015 Search in Google Scholar

Chaudhary S, Ali Z, Tehseen M, Haney EF, Pantoja-Angles A, Alshehri S, Wang T, Clancy GJ, Ayach M, Hauser C, et al. Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens. Nat Commun. 2023 Mar;14(1):1464. https://doi.org/10.1038/s41467-023-37003-z Chaudhary S Ali Z Tehseen M Haney EF Pantoja-Angles A Alshehri S Wang T Clancy GJ Ayach M Hauser C Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens . Nat Commun . 2023 Mar ; 14 ( 1 ): 1464 . https://doi.org/10.1038/s41467-023-37003-z Search in Google Scholar

Chen L, Shao L, Wang F, Huang Y, Gao F. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 2019 Apr;9(19):10494–10507. https://doi.org/10.1039/c8ra08788a Chen L Shao L Wang F Huang Y Gao F. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration . RSC Adv . 2019 Apr ; 9 ( 19 ): 10494 10507 . https://doi.org/10.1039/c8ra08788a Search in Google Scholar

Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1935–1947. https://doi.org/10.1080/21691401.2017.1396997 Cheng T Qu H Zhang G Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects . Artif Cells Nanomed Biotechnol . 2018 Dec ; 46 ( 8 ): 1935 1947 . https://doi.org/10.1080/21691401.2017.1396997 Search in Google Scholar

Cuérel C, Abrassart S, Billières J, Andrey D, Suva D, Dubois-Ferrière V, Uçkay I. Clinical and epidemiological differences between implant-associated and implant-free orthopaedic infections. Eur J Orthop Surg Traumatol. 2017 Feb;27(2):229–231. https://doi.org/10.1007/s00590-016-1879-3 Cuérel C Abrassart S Billières J Andrey D Suva D Dubois-Ferrière V Uçkay I. Clinical and epidemiological differences between implant-associated and implant-free orthopaedic infections . Eur J Orthop Surg Traumatol . 2017 Feb ; 27 ( 2 ): 229 231 . https://doi.org/10.1007/s00590-016-1879-3 Search in Google Scholar

Cui Y, Liu H, Tian Y, Fan Y, Li S, Wang G, Wang Y, Peng C, Wu D. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio. 2022 Aug;16:100409. https://doi.org/10.1016/j.mtbio.2022.100409 Cui Y Liu H Tian Y Fan Y Li S Wang G Wang Y Peng C Wu D. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration . Mater Today Bio . 2022 Aug ; 16 : 100409 . https://doi.org/10.1016/j.mtbio.2022.100409 Search in Google Scholar

De Mori A, Hafidh M, Mele N, Yusuf R, Cerri G, Gavini E, Tozzi G, Barbu E, Conconi M, Draheim RR, et al. Sustained release from injectable composite gels loaded with silver nanowires designed to combat bacterial resistance in bone regeneration applications. Pharmaceutics. 2019 Mar;11(3):116. https://doi.org/10.3390/pharmaceutics11030116 De Mori A Hafidh M Mele N Yusuf R Cerri G Gavini E Tozzi G Barbu E Conconi M Draheim RR Sustained release from injectable composite gels loaded with silver nanowires designed to combat bacterial resistance in bone regeneration applications . Pharmaceutics . 2019 Mar ; 11 ( 3 ): 116 . https://doi.org/10.3390/pharmaceutics11030116 Search in Google Scholar

Dorati R, DeTrizio A, Modena T, Conti B, Benazzo F, Gastaldi G, Genta I. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals. 2017 Dec;10(4):96. https://doi.org/10.3390/ph10040096 Dorati R DeTrizio A Modena T Conti B Benazzo F Gastaldi G Genta I. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy . Pharmaceuticals . 2017 Dec ; 10 ( 4 ): 96 . https://doi.org/10.3390/ph10040096 Search in Google Scholar

Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarza-deh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res. 2019 Mar;18:185–201. https://doi.org/10.1016/j.jare.2019.03.011 Eivazzadeh-Keihan R Maleki A de la Guardia M Bani MS Chenab KK Pashazadeh-Panahi P Baradaran B Mokhtarza-deh A Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review . J Adv Res . 2019 Mar ; 18 : 185 201 . https://doi.org/10.1016/j.jare.2019.03.011 Search in Google Scholar

Fang C, Wong TM, Lau TW, To KK, Wong SS, Leung F. Infection after fracture osteosynthesis – Part I. J Orthop Surg. 2017 Jan;25(1):2309499017692712. https://doi.org/10.1177/2309499017692712 Fang C Wong TM Lau TW To KK Wong SS Leung F. Infection after fracture osteosynthesis – Part I . J Orthop Surg . 2017 Jan ; 25 ( 1 ): 2309499017692712 . https://doi.org/10.1177/2309499017692712 Search in Google Scholar

Felice B, Sánchez MA, Socci MC, Sappia LD, Gómez MI, Cruz MK, Felice CJ, Martí M, Pividori MI, Simonelli G, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng C. 2018 Dec;93:724–738. https://doi.org/10.1016/j.msec.2018.08.009 Felice B Sánchez MA Socci MC Sappia LD Gómez MI Cruz MK Felice CJ Martí M Pividori MI Simonelli G Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity . Mater Sci Eng C . 2018 Dec ; 93 : 724 738 . https://doi.org/10.1016/j.msec.2018.08.009 Search in Google Scholar

Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev. 2021 Dec;179:114008. https://doi.org/10.1016/j.addr.2021.114008 Gao X Ding J Liao C Xu J Liu X Lu W. Defensins: The natural peptide antibiotic . Adv Drug Deliv Rev . 2021 Dec ; 179 : 114008 . https://doi.org/10.1016/j.addr.2021.114008 Search in Google Scholar

Ghiasi Tabari P, Sattari A, Mashhadi Keshtiban M, Karkuki Osguei N, Hardy JG, Samadikuchaksaraei A. Injectable hydrogel scaffold incorporating microspheres containing cobalt-doped bioactive glass for bone healing. J Biomed Mater Res. 2024 Dec;112(12):2225–2242. https://doi.org/10.1002/jbm.a.37773 Ghiasi Tabari P Sattari A Mashhadi Keshtiban M Karkuki Osguei N Hardy JG Samadikuchaksaraei A. Injectable hydrogel scaffold incorporating microspheres containing cobalt-doped bioactive glass for bone healing . J Biomed Mater Res . 2024 Dec ; 112 ( 12 ): 2225 2242 . https://doi.org/10.1002/jbm.a.37773 Search in Google Scholar

Gulati K, Scimeca JC, Ivanovski S, Verron E. Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discovery Today. 2021 Nov;26(11):2734–2742. https://doi.org/10.1016/j.drudis.2021.07.004 Gulati K Scimeca JC Ivanovski S Verron E. Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants . Drug Discovery Today . 2021 Nov ; 26 ( 11 ): 2734 2742 . https://doi.org/10.1016/j.drudis.2021.07.004 Search in Google Scholar

Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018 May;111:923–934. https://doi.org/10.1016/j.ijbiomac.2018.01.089 Hasan A Waibhaw G Saxena V Pandey LM. Nano-biocomposite scaffolds of chitosan carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications . Int J Biol Macromol . 2018 May ; 111 : 923 934 . https://doi.org/10.1016/j.ijbiomac.2018.01.089 Search in Google Scholar

Hassani Besheli N, Damoogh S, Zafar B, Mottaghitalab F, Mota-sadizadeh H, Rezaei F, Ali Shokrgozar M, Farokhi M. Preparation of a codelivery system based on vancomycin/silk scaffold containing silk nanoparticle loaded VEGF. ACS Biomater Sci Eng. 2018 Jul;4(8), 2836–2846. https://doi.org/10.1021/acsbiomateri-als.8b00149 Hassani Besheli N Damoogh S Zafar B Mottaghitalab F Mota-sadizadeh H Rezaei F Ali Shokrgozar M Farokhi M. Preparation of a codelivery system based on vancomycin/silk scaffold containing silk nanoparticle loaded VEGF . ACS Biomater Sci Eng . 2018 Jul ; 4 ( 8 ), 2836 2846 . https://doi.org/10.1021/acsbiomateri-als.8b00149 Search in Google Scholar

He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, Liu H, Ma G, Wang X. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater. 2020 Apr;7(5):515–525. https://doi.org/10.1093/rb/rbaa015 He Y Jin Y Ying X Wu Q Yao S Li Y Liu H Ma G Wang X. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair . Regen Biomater . 2020 Apr ; 7 ( 5 ): 515 525 . https://doi.org/10.1093/rb/rbaa015 Search in Google Scholar

Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011 Apr;3(2):55–65. https://doi.org/10.4248/IJOS11026 Høiby N Ciofu O Johansen HK Song ZJ Moser C Jensen Molin S Givskov M Tolker-Nielsen T Bjarnsholt T. The clinical impact of bacterial biofilms . Int J Oral Sci . 2011 Apr ; 3 ( 2 ): 55 65 . https://doi.org/10.4248/IJOS11026 Search in Google Scholar

Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: Types and mechanism of action. Res Microbiol. 2024 Mar-Apr;175(3):104111. https://doi.org/10.1016/j.resmic.2023.104111 Hussaini IM Oyewole OA Sulaiman MA Dabban AI Sulaiman AN Tarek R. Microbial anti-biofilms: Types and mechanism of action . Res Microbiol . 2024 Mar-Apr ; 175 ( 3 ): 104111 . https://doi.org/10.1016/j.resmic.2023.104111 Search in Google Scholar

Jayaprakash N, Elumalai K, Manickam S, Bakthavatchalam G, Tamilselvan P. Carbon nanomaterials: Revolutionizing biomedical applications with promising potential. Nano Mater Sci. 2024 Dec; article in press. https://doi.org/10.1016/j.nanoms.2024.11.004 Jayaprakash N Elumalai K Manickam S Bakthavatchalam G Tamilselvan P. Carbon nanomaterials: Revolutionizing biomedical applications with promising potential . Nano Mater Sci . 2024 Dec ; article in press . https://doi.org/10.1016/j.nanoms.2024.11.004 Search in Google Scholar

Kalbian IL, Goswami K, Tan TL, John N, Foltz C, Parvizi J, Arnold WV. Treatment outcomes and attrition in Gram-negative periprosthetic joint infection. J Arthroplasty. 2020 Mar;35(3):849–854. https://doi.org/10.1016/j.arth.2019.09.044 Kalbian IL Goswami K Tan TL John N Foltz C Parvizi J Arnold WV. Treatment outcomes and attrition in Gram-negative periprosthetic joint infection . J Arthroplasty . 2020 Mar ; 35 ( 3 ): 849 854 . https://doi.org/10.1016/j.arth.2019.09.044 Search in Google Scholar

Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-based scaffolds for tissue engineering applications: A review on graphene, carbon nanotubes and nanocellulose. Tissue Eng Regener Med. 2023 Jun;20(3):411–433. https://doi.org/10.1007/s13770-023-00530-3 Kandhola G Park S Lim JW Chivers C Song YH Chung JH Kim J Kim JW. Nanomaterial-based scaffolds for tissue engineering applications: A review on graphene carbon nanotubes and nanocellulose . Tissue Eng Regener Med . 2023 Jun ; 20 ( 3 ): 411 433 . https://doi.org/10.1007/s13770-023-00530-3 Search in Google Scholar

Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA. Periprosthetic joint infection. Lancet. 2016 Jan;387(10016):386–394. https://doi.org/10.1016/S0140-6736(14)61798-0 Kapadia BH Berg RA Daley JA Fritz J Bhave A Mont MA. Periprosthetic joint infection . Lancet . 2016 Jan ; 387 ( 10016 ): 386 394 . https://doi.org/10.1016/S0140-6736(14)61798-0 Search in Google Scholar

Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens. 2024 Aug;13(8):668. https://doi.org/10.3390/pathogens13080668 Kaplan JB Sukhishvili SA Sailer M Kridin K Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme . Pathogens . 2024 Aug ; 13 ( 8 ): 668 . https://doi.org/10.3390/pathogens13080668 Search in Google Scholar

Karamat-Ullah N, Demidov Y, Schramm M, Grumme D, Auer J, Bohr C, Brachvogel B, Maleki H. 3D Printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modi-fied silk fibroin with silica nanostructure. ACS Biomater Sci Eng. 2021 Sep;7(9):4545–4556. https://doi.org/10.1021/acsbiomateri-als.1c00483 Karamat-Ullah N Demidov Y Schramm M Grumme D Auer J Bohr C Brachvogel B Maleki H. 3D Printing of antibacterial biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modi-fied silk fibroin with silica nanostructure . ACS Biomater Sci Eng . 2021 Sep ; 7 ( 9 ): 4545 4556 . https://doi.org/10.1021/acsbiomateri-als.1c00483 Search in Google Scholar

Kennedy DG, O’Mahony AM, Culligan EP, O’Driscoll CM, Ryan KB. Strategies to mitigate and treat orthopaedic device-associated infections. Antibiotics. 2022 Dec;11(12):1822. https://doi.org/10.3390/antibiotics11121822 Kennedy DG O’Mahony AM Culligan EP O’Driscoll CM Ryan KB. Strategies to mitigate and treat orthopaedic device-associated infections . Antibiotics . 2022 Dec ; 11 ( 12 ): 1822 . https://doi.org/10.3390/antibiotics11121822 Search in Google Scholar

Kiselevskiy MV, Anisimova NY, Kapustin AV, Ryzhkin AA, Kuznetsova DN, Polyakova VV, Enikeev NA. Development of bioactive scaffolds for orthopedic applications by designing additively manufactured titanium porous structures: A Critical Review. Biomimetics. 2023 Nov;8(7):546. https://doi.org/10.3390/biomi-metics8070546 Kiselevskiy MV Anisimova NY Kapustin AV Ryzhkin AA Kuznetsova DN Polyakova VV Enikeev NA. Development of bioactive scaffolds for orthopedic applications by designing additively manufactured titanium porous structures: A Critical Review . Biomimetics . 2023 Nov ; 8 ( 7 ): 546 . https://doi.org/10.3390/biomi-metics8070546 Search in Google Scholar

Lau JSY, Korman TM, Woolley I. Life-long antimicrobial therapy: where is the evidence? J Antimicrob Chemother. 2018 Oct;73(10):2601–2612. https://10.1093/jac/dky174 Lau JSY Korman TM Woolley I. Life-long antimicrobial therapy: where is the evidence? J Antimicrob Chemother . 2018 Oct ; 73 ( 10 ): 2601 2612 . https://10.1093/jac/dky174 Search in Google Scholar

Lee JH, Baik JM, Yu YS, Kim JH, Ahn CB, Son KH, Kim JH, Choi ES, Lee JW. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci Rep. 2020 May;10(1):7554. https://doi.org/10.1038/s41598-020-64573-5 Lee JH Baik JM Yu YS Kim JH Ahn CB Son KH Kim JH Choi ES Lee JW. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis . Sci Rep . 2020 May ; 10 ( 1 ): 7554 . https://doi.org/10.1038/s41598-020-64573-5 Search in Google Scholar

Li L, Shi J, Ma K, Jin J, Wang P, Liang H, Cao Y, Wang X, Jiang Q. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res. 2020 Nov;30:75-84. https://doi.org/10.1016/j.jare.2020.11.011 Li L Shi J Ma K Jin J Wang P Liang H Cao Y Wang X Jiang Q. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects . J Adv Res . 2020 Nov ; 30 : 75 - 84 . https://doi.org/10.1016/j.jare.2020.11.011 Search in Google Scholar

Li M, Zhao P, Wang J, Zhang X, Li J. Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing. Mater Horiz. 2025 Jan 2;12(1):20–36. https://doi.org/10.1039/d4mh01124d Li M Zhao P Wang J Zhang X Li J. Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing . Mater Horiz . 2025 Jan 2 ; 12 ( 1 ): 20 36 . https://doi.org/10.1039/d4mh01124d Search in Google Scholar

Liang W, Zhou C, Bai J, Zhang H, Jiang B, Wang J, Fu L, Long H, Huang X, Zhao J, et al. Current advancements in therapeutic approaches in orthopedic surgery: A review of recent trends. Front Bioeng Biotechnol. 2024 Feb;12:1328997. https://doi.org/10.3389/fbioe.2024.1328997 Liang W Zhou C Bai J Zhang H Jiang B Wang J Fu L Long H Huang X Zhao J Current advancements in therapeutic approaches in orthopedic surgery: A review of recent trends . Front Bioeng Biotechnol . 2024 Feb ; 12 : 1328997 . https://doi.org/10.3389/fbioe.2024.1328997 Search in Google Scholar

Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater. 2021 Jan;6(8):2412–2438. https://doi.org/10.1016/j.bioactmat.2021.01.007 Litowczenko J Woźniak-Budych MJ Staszak K Wieszczycka K Jurga S Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application . Bioact Mater . 2021 Jan ; 6 ( 8 ): 2412 2438 . https://doi.org/10.1016/j.bioactmat.2021.01.007 Search in Google Scholar

Liu Y, Zhao Q, Chen C, Wu C, Ma Y. β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment. PLoS One. 2022 Dec;17(12):e0277522. https://doi.org/10.1371/journal.pone.0277522 Liu Y Zhao Q Chen C Wu C Ma Y. β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment . PLoS One . 2022 Dec ; 17 ( 12 ): e0277522 . https://doi.org/10.1371/journal.pone.0277522 Search in Google Scholar

Lu Y, Wang X, Chen H, Li X, Liu H, Wang J, Qian Z. “Metal-bone” scaffold for accelerated peri-implant endosseous healing. Front Bioeng Biotechnol. 2024 Jan;11:1334072. https://doi.org/10.3389/fbioe.2023.1334072 Lu Y Wang X Chen H Li X Liu H Wang J Qian Z. “Metal-bone” scaffold for accelerated peri-implant endosseous healing . Front Bioeng Biotechnol . 2024 Jan ; 11 : 1334072 . https://doi.org/10.3389/fbioe.2023.1334072 Search in Google Scholar

Lu Z, Wu Y, Cong Z, Qian Y, Wu X, Shao N, Qiao Z, Zhang H, She Y, Chen K, et al. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater. 2021 May;6(12):4531–4541. https://doi.org/10.1016/j.bioactmat.2021.05.008 Lu Z Wu Y Cong Z Qian Y Wu X Shao N Qiao Z Zhang H She Y Chen K Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers . Bioact Mater . 2021 May ; 6 ( 12 ): 4531 4541 . https://doi.org/10.1016/j.bioactmat.2021.05.008 Search in Google Scholar

Luo Y, Humayun A, Mills DK. Surface modification of 3D printed PLA/Halloysite composite scaffolds with antibacterial and osteogenic capabilities. Appl. Sci. 2020 May;(11):3971. https://doi.org/10.3390/app10113971 Luo Y Humayun A Mills DK. Surface modification of 3D printed PLA/Halloysite composite scaffolds with antibacterial and osteogenic capabilities . Appl. Sci . 2020 May ;( 11 ): 3971 . https://doi.org/10.3390/app10113971 Search in Google Scholar

Mahmoudi Z, Sedighi M, Jafari A, Naghieh S, Stefanek E, Akbari M, Savoji H. In situ 3D bioprinting: A promising technique in advanced biofabrication strategies. Bioprinting. 2023 Feb;31:e00260. https://doi.org/10.1016/j.bprint.2023.e00260 Mahmoudi Z Sedighi M Jafari A Naghieh S Stefanek E Akbari M Savoji H. In situ 3D bioprinting: A promising technique in advanced biofabrication strategies . Bioprinting . 2023 Feb ; 31 : e00260 . https://doi.org/10.1016/j.bprint.2023.e00260 Search in Google Scholar

Melo SF, Neves SC, Pereira AT, Borges I, Granja PL, Magalhães FD, Gonçalves IC. Incorporation of graphene oxide into poly(?-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Mater Sci Eng C. 2020 Apr;109:110537. https://doi.org/10.1016/j.msec.2019.110537 Melo SF Neves SC Pereira AT Borges I Granja PL Magalhães FD Gonçalves IC. Incorporation of graphene oxide into poly(?-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties . Mater Sci Eng C . 2020 Apr ; 109 : 110537 . https://doi.org/10.1016/j.msec.2019.110537 Search in Google Scholar

Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial peptides and their biomedical applications: A review. Antibiotics. 2024 Aug;13(9):794. https://doi.org/10.3390/antibiotics13090794 Min KH Kim KH Ki MR Pack SP. Antimicrobial peptides and their biomedical applications: A review . Antibiotics . 2024 Aug ; 13 ( 9 ): 794 . https://doi.org/10.3390/antibiotics13090794 Search in Google Scholar

Momodu II, Savaliya V. Osteomyelitis [Internet, updated 2023 May 31]. Treasure Island (USA): StatPearls Publishing; 2023 [cited 2025 February 14]. Available from https://www.ncbi.nlm.nih.gov/books/NBK532250 Momodu II Savaliya V. Osteomyelitis [Internet , updated 2023 May 31]. Treasure Island (USA) : StatPearls Publishing ; 2023 [cited 2025 February 14 ]. Available from https://www.ncbi.nlm.nih.gov/books/NBK532250 Search in Google Scholar

Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov. 2020 May;19(5):311–332. https://doi.org/10.1038/s41573-019-0058-8 Mookherjee N Anderson MA Haagsman HP Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential . Nat Rev Drug Discov . 2020 May ; 19 ( 5 ): 311 332 . https://doi.org/10.1038/s41573-019-0058-8 Search in Google Scholar

Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol. 2021 Jun;11:668632. https://doi.org/10.3389/fcimb.2021.668632 Moretta A Scieuzo C Petrone AM Salvia R Manniello MD Franco A Lucchetti D Vassallo A Vogel H Sgambato A Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields . Front Cell Infect Microbiol . 2021 Jun ; 11 : 668632 . https://doi.org/10.3389/fcimb.2021.668632 Search in Google Scholar

Olmo JAD, Ruiz-Rubio L, Pérez-Alvarez L, Sáez-Martínez V, Vilas-Vilela JL. Antibacterial coatings for improving the performance of biomaterials. Coatings. 2020 Feb;10(2):139. https://doi.org/10.3390/coatings10020139 Olmo JAD Ruiz-Rubio L Pérez-Alvarez L Sáez-Martínez V Vilas-Vilela JL. Antibacterial coatings for improving the performance of biomaterials . Coatings . 2020 Feb ; 10 ( 2 ): 139 . https://doi.org/10.3390/coatings10020139 Search in Google Scholar

Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR; Infectious Diseases Society of America. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013 Jan;56(1):e1–e25. https://doi.org/10.1093/cid/cis803 Osmon DR Berbari EF Berendt AR Lew D Zimmerli W Steckelberg JM Rao N Hanssen A Wilson WR Infectious Diseases Society of America Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America . Clin Infect Dis . 2013 Jan ; 56 ( 1 ): e1 e25 . https://doi.org/10.1093/cid/cis803 Search in Google Scholar

Pérez-Davila S, Potel-Alvarellos C, Carballo R, González-Rodríguez L, López-Álvarez M, Serra J, Díaz-Rodríguez P, Landín M, González P. Vancomycin-loaded 3D-printed polylactic acid-hydroxyapatite scaffolds for bone tissue engineering. Polymers. 2023 Oct;15(21):4250. https://doi.org/10.3390/polym15214250 Pérez-Davila S Potel-Alvarellos C Carballo R González-Rodríguez L López-Álvarez M Serra J Díaz-Rodríguez P Landín M González P. Vancomycin-loaded 3D-printed polylactic acid-hydroxyapatite scaffolds for bone tissue engineering . Polymers . 2023 Oct ; 15 ( 21 ): 4250 . https://doi.org/10.3390/polym15214250 Search in Google Scholar

Pietrocola G, Campoccia D, Motta C, Montanaro L, Arciola CR, Speziale P. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants. Int J Mol Sci. 2022 May;23(11):5958. https://doi.org/10.3390/ijms23115958 Pietrocola G Campoccia D Motta C Montanaro L Arciola CR Speziale P. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants . Int J Mol Sci . 2022 May ; 23 ( 11 ): 5958 . https://doi.org/10.3390/ijms23115958 Search in Google Scholar

Pirisi L, Pennestrì F, Viganò M, Banfi G. Prevalence and burden of orthopaedic implantable-device infections in Italy: A hospital-based national study. BMC Infect Dis. 2020 May;20(1):337. https://doi.org/10.1186/s12879-020-05065-9 Pirisi L Pennestrì F Viganò M Banfi G. Prevalence and burden of orthopaedic implantable-device infections in Italy: A hospital-based national study . BMC Infect Dis . 2020 May ; 20 ( 1 ): 337 . https://doi.org/10.1186/s12879-020-05065-9 Search in Google Scholar

Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, et al. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res. 2024 May;12(1):28. https://doi.org/10.1038/s41413-024-00332-w Qin L Yang S Zhao C Yang J Li F Xu Z Yang Y Zhou H Li K Xiong C Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections . Bone Res . 2024 May ; 12 ( 1 ): 28 . https://doi.org/10.1038/s41413-024-00332-w Search in Google Scholar

Rather MA, Gupta K, Mandal M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021 Dec;52(4):1701–1718. https://doi.org/10.1007/s42770-021-00624-x Rather MA Gupta K Mandal M. Microbial biofilm: Formation, architecture, antibioti cresistance and control strategies . Braz J Microbiol . 2021 Dec ; 52 ( 4 ): 1701 1718 . https://doi.org/10.1007/s42770-021-00624-x Search in Google Scholar

Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ. Introduction to biomaterials science: An evolving, multidisciplinary endeavor. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, and Yaszemski MJ, editors. Biomaterials science: An introduction to materials in medicine. Cambridge (USA): Academic Press; 2020. p. 3–19. https://doi.org/10.1016/B978-0-12-816137-1.00001-5 Ratner BD Hoffman AS Schoen FJ Lemons JE Wagner WR Sakiyama-Elbert SE Zhang G Yaszemski MJ. Introduction to biomaterials science: An evolving, multidisciplinary endeavor . In: Wagner WR Sakiyama-Elbert SE Zhang G Yaszemski MJ , editors. Biomaterials science: An introduction to materials in medicine . Cambridge (USA) : Academic Press ; 2020 . p. 3 19 . https://doi.org/10.1016/B978-0-12-816137-1.00001-5 Search in Google Scholar

Renz N, Feihl S, Dlaska CE, Schütz MA, Trampuz A. [Osteosynthesis-associated infections: Epidemiology, definition and diagnosis] (in German). Unfallchirurg. 2017 Jun;120(6):454–460. https://doi.org/10.1007/s00113-017-0364-8 Renz N Feihl S Dlaska CE Schütz MA Trampuz A. [Osteosynthesis-associated infections: Epidemiology, definition and diagnosis] (in German) . Unfallchirurg . 2017 Jun ; 120 ( 6 ): 454 460 . https://doi.org/10.1007/s00113-017-0364-8 Search in Google Scholar

Rosas S, Ong AC, Buller LT, Sabeh KG, Law TY, Roche MW, Hernandez VH. Season of the year influences infection rates following total hip arthroplasty. World J Orthop. 2017 Dec;8(12):895–901. https://doi.org/10.5312/wjo.v8.i12.895 Rosas S Ong AC Buller LT Sabeh KG Law TY Roche MW Hernandez VH. Season of the year influences infection rates following total hip arthroplasty . World J Orthop . 2017 Dec ; 8 ( 12 ): 895 901 . https://doi.org/10.5312/wjo.v8.i12.895 Search in Google Scholar

Rozis M, Evangelopoulos DS, Pneumaticos SG. Orthopedic implant-related biofilm pathophysiology: A review of the literature. Cureus. 2021 Jun;13(6):e15634. https://doi.org/10.7759/cu-reus.15634 Rozis M Evangelopoulos DS Pneumaticos SG. Orthopedic implant-related biofilm pathophysiology: A review of the literature . Cureus . 2021 Jun ; 13 ( 6 ): e15634 . https://doi.org/10.7759/cu-reus.15634 Search in Google Scholar

Sarigol-Calamak E, Hascicek C. Tissue scaffolds as a local drug delivery system for bone regeneration. Adv Exp Med Biol. 2018;1078:475–493. https://doi.org/10.1007/978-981-13-0950-2_25 Sarigol-Calamak E Hascicek C. Tissue scaffolds as a local drug delivery system for bone regeneration . Adv Exp Med Biol . 2018 ; 1078 : 475 493 . https://doi.org/10.1007/978-981-13-0950-2_25 Search in Google Scholar

Schwarz EM, Parvizi J, Gehrke T, Aiyer A, Battenberg A, Brown SA, Callaghan JJ, Citak M, Egol K, Garrigues GE, et al. 2018 International consensus meeting on musculoskeletal infection: Research priorities from the general assembly questions. J Orthop Res. 2019 May;37(5):997–1006. https://doi.org/10.1002/jor.24293 Schwarz EM Parvizi J Gehrke T Aiyer A Battenberg A Brown SA Callaghan JJ Citak M Egol K Garrigues GE 2018 International consensus meeting on musculoskeletal infection: Research priorities from the general assembly questions . J Orthop Res . 2019 May ; 37 ( 5 ): 997 1006 . https://doi.org/10.1002/jor.24293 Search in Google Scholar

Sehgal RR, Carvalho E, Banerjee R. Mechanically stiff, zinc crosslinked nanocomposite scaffolds with improved osteostimulation and antibacterial properties. ACS Appl Mater Interfaces. 2016 Jun;8(22):13735–13747. https://doi.org/10.1021/acsami.6b02740 Sehgal RR Carvalho E Banerjee R. Mechanically stiff zinc crosslinked nanocomposite scaffolds with improved osteostimulation and antibacterial properties . ACS Appl Mater Interfaces . 2016 Jun ; 8 ( 22 ): 13735 13747 . https://doi.org/10.1021/acsami.6b02740 Search in Google Scholar

Shah NB, Hersh BL, Kreger A, Sayeed A, Bullock AG, Rothen-berger SD, Klatt B, Hamlin B, Urish KL. Benefits and adverse events associated with extended antibiotic use in total knee arthroplasty periprosthetic joint infection. Clin Infect Dis. 2020 Feb;70(4):559–565. https://doi.org/10.1093/cid/ciz261 Shah NB Hersh BL Kreger A Sayeed A Bullock AG Rothen-berger SD Klatt B Hamlin B Urish KL. Benefits and adverse events associated with extended antibiotic use in total knee arthroplasty periprosthetic joint infection . Clin Infect Dis . 2020 Feb ; 70 ( 4 ): 559 565 . https://doi.org/10.1093/cid/ciz261 Search in Google Scholar

Shen M, Wang L, Gao Y, Feng L, Xu C, Li S, Wang X, Wu Y, Guo Y, Pei G. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio. 2022 Aug;16:100382. https://doi.org/10.1016/j.mtbio.2022.100382 Shen M Wang L Gao Y Feng L Xu C Li S Wang X Wu Y Guo Y Pei G. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects . Mater Today Bio . 2022 Aug ; 16 : 100382 . https://doi.org/10.1016/j.mtbio.2022.100382 Search in Google Scholar

Shrestha BK, Shrestha S, Tiwari AP, Kim JI, Ko SW, Kim HJ, Park CH, Kim CS. Bio-inspired hybrid scaffold of zinc oxide-function-alized multi-wall carbon nanotubes reinforced polyurethane nano-fibersfor bone tissue engineering. Mater. Des. 2017 Jul;133:69–81. https://doi.org/10.1016/j.matdes.2017.07.049 Shrestha BK Shrestha S Tiwari AP Kim JI Ko SW Kim HJ Park CH Kim CS. Bio-inspired hybrid scaffold of zinc oxide-function-alized multi-wall carbon nanotubes reinforced polyurethane nano-fibersfor bone tissue engineering . Mater. Des . 2017 Jul ; 133 : 69 81 . https://doi.org/10.1016/j.matdes.2017.07.049 Search in Google Scholar

Shuai C, Wang C, Qi F, Shuping P, Yang W, He C, Wang G, Qian G. Enhanced crystallinity and antibacterial of PHBV scaffolds incorporated with zinc oxide. J Nanomater. 2020 Jul;:6014816. https://doi.org/10.1155/2020/6014816 Shuai C Wang C Qi F Shuping P Yang W He C Wang G Qian G. Enhanced crystallinity and antibacterial of PHBV scaffolds incorporated with zinc oxide . J Nanomater . 2020 Jul ;: 6014816 . https://doi.org/10.1155/2020/6014816 Search in Google Scholar

Sun J, Tan H, Liu H, Jin D, Yin M, Lin H, Qu X, Liu C. A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomater Sci. 2020 Dec;8(24):6946–6956. https://doi.org/10.1039/d0bm01213k Sun J Tan H Liu H Jin D Yin M Lin H Qu X Liu C. A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing . Biomater Sci . 2020 Dec ; 8 ( 24 ): 6946 6956 . https://doi.org/10.1039/d0bm01213k Search in Google Scholar

Tian L, Zhang Z, Tian B, Zhang X, Wang N. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Adv. 2020 Jan;10(8):4805–4816. https://doi.org/10.1039/c9ra10275b Tian L Zhang Z Tian B Zhang X Wang N. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds . RSC Adv . 2020 Jan ; 10 ( 8 ): 4805 4816 . https://doi.org/10.1039/c9ra10275b Search in Google Scholar

Valour F, Karsenty J, Bouaziz A, Ader F, Tod M, Lustig S, Laurent F, Ecochard R, Chidiac C, Ferry T; Lyon BJI Study Group. Antimicrobial-related severe adverse events during treatment of bone and joint infection due to methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2014 Jan;58(2):746–755. https://doi.org/10.1128/aac.02032-13 Valour F Karsenty J Bouaziz A Ader F Tod M Lustig S Laurent F Ecochard R Chidiac C Ferry T Lyon BJI Study Group Antimicrobial-related severe adverse events during treatment of bone and joint infection due to methicillin-susceptible Staphylococcus aureus . Antimicrob Agents Chemother . 2014 Jan ; 58 ( 2 ): 746 755 . https://doi.org/10.1128/aac.02032-13 Search in Google Scholar

Wei J, Wang Y, Jiang J, Yan Y, Fan D, Yang X, Zuo Y, Li Y, Gu H, Li J. Development of an antibacterial bone graft by immobilization of levofloxacin hydrochloride-loaded mesoporous silica microspheres on a porous scaffold surface. J Biomed Nanotechnol. 2019 May;15(5):1097-1105. https://doi.org/10.1166/jbn.2019.2743 Wei J Wang Y Jiang J Yan Y Fan D Yang X Zuo Y Li Y Gu H Li J. Development of an antibacterial bone graft by immobilization of levofloxacin hydrochloride-loaded mesoporous silica microspheres on a porous scaffold surface . J Biomed Nanotechnol . 2019 May ; 15 ( 5 ): 1097 - 1105 . https://doi.org/10.1166/jbn.2019.2743 Search in Google Scholar

Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B. 2023 Dec;11(48):11405–11425. https://doi.org/10.1039/d3tb01874a Wen X Wang J Pei X Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications . J Mater Chem B . 2023 Dec ; 11 ( 48 ): 11405 11425 . https://doi.org/10.1039/d3tb01874a Search in Google Scholar

Xu H, Shen M, Shang H, Xu W, Zhang S, Yang HR, Zhou D, Hak-karainen M. Osteoconductive and antibacterial poly(lactic acid) fibrous membranes impregnated with biobased nanocarbons for biodegradable bone regenerative scaffolds. Ind Eng Chem Res. 2021 Aug;60(32):12021–12031 https://doi.org/10.1021/acs.iecr.1c02165 Xu H Shen M Shang H Xu W Zhang S Yang HR Zhou D Hak-karainen M. Osteoconductive and antibacterial poly(lactic acid) fibrous membranes impregnated with biobased nanocarbons for biodegradable bone regenerative scaffolds . Ind Eng Chem Res . 2021 Aug ; 60 ( 32 ): 12021 12031 https://doi.org/10.1021/acs.iecr.1c02165 Search in Google Scholar

Yang Y, Wang J, Huang S, Li M, Chen J, Pei D, Tang Z, Guo B. Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing. Natl Sci Rev. 2024 Jan;11(4):nwae044. https://doi.org/10.1093/nsr/nwae044 Yang Y Wang J Huang S Li M Chen J Pei D Tang Z Guo B. Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing . Natl Sci Rev . 2024 Jan ; 11 ( 4 ): nwae044 . https://doi.org/10.1093/nsr/nwae044 Search in Google Scholar

Ye Z, Zhu X, Mutreja I, Boda SK, Fischer NG, Zhang A, Lui C, Qi Y, Aparicio C. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact Mater. 2021 Jan;6(8):2250–2260. https://doi.org/10.1016/j.bioactmat.2020.12.029 Ye Z Zhu X Mutreja I Boda SK Fischer NG Zhang A Lui C Qi Y Aparicio C. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides . Bioact Mater . 2021 Jan ; 6 ( 8 ): 2250 2260 . https://doi.org/10.1016/j.bioactmat.2020.12.029 Search in Google Scholar

Zhang N, Wang Z, Zeng Y, Guo Y, Wang L, Liu J, Wang Y, Zhan P. Butterfly metamorphosis inspired injectable in situ forming scaffolds with time-dependent pore formation for bone regeneration. J Mater Sci. 2023 Apr;58:7456–7468. https://doi.org/10.1007/s10853-023-08466-8 Zhang N Wang Z Zeng Y Guo Y Wang L Liu J Wang Y Zhan P. Butterfly metamorphosis inspired injectable in situ forming scaffolds with time-dependent pore formation for bone regeneration . J Mater Sci . 2023 Apr ; 58 : 7456 7468 . https://doi.org/10.1007/s10853-023-08466-8 Search in Google Scholar

Zhang Y, Zhai D, Xu M, Yao Q, Zhu H, Chang J, Wu C. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017 Jun;9(2):025037. https://doi.org/10.1088/1758-5090/aa6ed6 Zhang Y Zhai D Xu M Yao Q Zhu H Chang J Wu C. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity . Biofabrication . 2017 Jun ; 9 ( 2 ): 025037 . https://doi.org/10.1088/1758-5090/aa6ed6 Search in Google Scholar

Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact Mater. 2022 Feb;18:383–398. https://doi.org/10.1016/j.bio-actmat.2022.02.010 Zhao C Liu W Zhu M Wu C Zhu Y. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review . Bioact Mater . 2022 Feb ; 18 : 383 398 . https://doi.org/10.1016/j.bio-actmat.2022.02.010 Search in Google Scholar

Zhou J, Zhou XG, Wang JW, Zhou H, Dong J. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res. 2018a Jan;7(1):46–57. https://doi.org/10.1302/2046-3758.71.bjr-2017-0129.r2 Zhou J Zhou XG Wang JW Zhou H Dong J. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold . Bone Joint Res . 2018a Jan ; 7 ( 1 ): 46 57 . https://doi.org/10.1302/2046-3758.71.bjr-2017-0129.r2 Search in Google Scholar

Zhou Z, Yao Q, Li L, Zhang X, Wei B, Yuan L, Wang L. Antimicrobial activity of 3D-printed poly(ε-caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med Sci Monit. 2018b Sep;24:6934–6945. https://doi.org/10.12659/msm.911770 Zhou Z Yao Q Li L Zhang X Wei B Yuan L Wang L. Antimicrobial activity of 3D-printed poly(ε-caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres . Med Sci Monit . 2018b Sep ; 24 : 6934 6945 . https://doi.org/10.12659/msm.911770 Search in Google Scholar

Zhu T, Zhu M, Zhu Y. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceram Int. 2020 Jun;46(9):13607–13614. https://doi.org/10.1016/j.ceramint.2020.02.146 Zhu T Zhu M Zhu Y. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy . Ceram Int . 2020 Jun ; 46 ( 9 ): 13607 13614 . https://doi.org/10.1016/j.ceramint.2020.02.146 Search in Google Scholar

Zimmerli W. Clinical presentation and treatment of orthopaedic implant-associated infection. J Intern Med. 2014 Aug;276(2):111–119. https://doi.org/10.1111/joim.12233 Zimmerli W. Clinical presentation and treatment of orthopaedic implant-associated infection . J Intern Med . 2014 Aug ; 276 ( 2 ): 111 119 . https://doi.org/10.1111/joim.12233 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze biologiche, Microbiologia e virologia