This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Afewerki S, Bassous N, Harb S, Palo-Nieto C, Ruiz-Esparza GU, Marciano FR, Webster TJ, Furtado ASA, Lobo AO. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine. 2020 Feb;24:102143. https://doi.org/10.1016/j.nano.2019.102143AfewerkiSBassousNHarbSPalo-NietoCRuiz-EsparzaGUMarcianoFRWebsterTJFurtadoASALoboAO.Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications. Nanomedicine. 2020Feb;24:102143. https://doi.org/10.1016/j.nano.2019.102143Search in Google Scholar
Agnihotri S, Dhiman NK. Development of nano-antimicrobial biomaterials for biomedical applications. In: Tripathi A, Melo JS, editors. Advances in Biomaterials for Biomedical Applications. Singapore: Springer Nature; 2017. p. 479–545. https://doi.org/10.1007/978-981-10-3328-5_12AgnihotriSDhimanNK.Development of nano-antimicrobial biomaterials for biomedical applications. In: TripathiAMeloJS, editors. Advances in Biomaterials for Biomedical Applications. Singapore: Springer Nature; 2017. p. 479–545. https://doi.org/10.1007/978-981-10-3328-5_12Search in Google Scholar
Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio. 2019 Jun;2:100017. https://doi.org/10.1016/j.mtbio.2019.100017AhmedWZhaiZGaoC.Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio. 2019Jun;2:100017. https://doi.org/10.1016/j.mtbio.2019.100017Search in Google Scholar
Al-Madboly LA, Aboulmagd A, El-Salam MA, Kushkevych I, El-Morsi RM. Microbial enzymes as powerful natural anti-biofilm candidates. Microb Cell Fact. 2024 Dec;23(1):343. https://doi.org/10.1186/s12934-024-02610-yAl-MadbolyLAAboulmagdAEl-SalamMAKushkevychIEl-MorsiRM.Microbial enzymes as powerful natural anti-biofilm candidates. Microb Cell Fact. 2024Dec;23(1):343. https://doi.org/10.1186/s12934-024-02610-ySearch in Google Scholar
Angulo-Pineda C, Srirussamee K, Palma P, Fuenzalida VM, Cartmell SH, Palza H. Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials. 2020 Feb;10(3):428. https://doi.org/10.3390/nano10030428Angulo-PinedaCSrirussameeKPalmaPFuenzalidaVMCartmellSHPalzaH.Electroactive 3D printed scaffolds based on percolated composites of polycaprolactone with thermally reduced graphene oxide for antibacterial and tissue engineering applications. Nanomaterials. 2020Feb;10(3):428. https://doi.org/10.3390/nano10030428Search in Google Scholar
Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, et al. Highlights on advancing frontiers in tissue engineering. Tissue Eng Part B Rev. 2022 Jun;28(3):633–664. https://doi.org/10.1089/ten.TEB.2021.0012AshammakhiNGhavamiNejadATutarRFrickerARoyIChatzistavrouXHoque ApuENguyenKLAhsanTHighlights on advancing frontiers in tissue engineering. Tissue Eng Part B Rev. 2022Jun;28(3):633–664. https://doi.org/10.1089/ten.TEB.2021.0012Search in Google Scholar
Aslam Khan MU, Haider A, Abd Razak SI, Abdul Kadir MR, Haider S, Shah SA, Hasan A, Khan R, Khan SD, Shakir I. Arabi-noxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing. J Tissue Eng Regen Med. 2021b Apr;15(4):322–335. https://doi.org/10.1002/term.3168Aslam KhanMUHaiderAAbd RazakSIAbdul KadirMRHaiderSShahSAHasanAKhanRKhanSDShakirI.Arabi-noxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing. J Tissue Eng Regen Med. 2021bApr;15(4):322–335. https://doi.org/10.1002/term.3168Search in Google Scholar
Aslam Khan MU, Haider S, Haider A, Abd Razak SI, Abdul Kadir MR, Shah SA, Javed A, Shakir I, Al-Zahrani AA. Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomposite scaffold for bone tissue engineering, Arab. J. Chem. 2021a Dec;14(2):14102924, https://doi.org/10.1016/j.arabjc.2020.102924Aslam KhanMUHaiderSHaiderAAbd RazakSIAbdul KadirMRShahSAJavedAShakirIAl-ZahraniAA.Development of porous, antibacterial and biocompatible GO/n-HAp/bacterial cellulose/β-glucan biocomposite scaffold for bone tissue engineering, Arab. J. Chem. 2021aDec;14(2):14102924, https://doi.org/10.1016/j.arabjc.2020.102924Search in Google Scholar
Atkinson I, Seciu-Grama AM, Serafim A, Petrescu S, Voicescu M, Anghel EM, Marinescu C, Mitran RA, Mocioiu OC, Cusu JP, et al. Bioinspired 3D scaffolds with antimicrobial, drug delivery, and osteogenic functions for bone regeneration. Drug Deliv Transl Res. 2024 Apr;14(4):1028–1047. https://doi.org/10.1007/s13346-023-01448-yAtkinsonISeciu-GramaAMSerafimAPetrescuSVoicescuMAnghelEMMarinescuCMitranRAMocioiuOCCusuJPBioinspired 3D scaffolds withanti microbial drug delivery and osteogenic functions for bone regeneration. Drug Deliv Transl Res. 2024Apr;14(4):1028–1047. https://doi.org/10.1007/s13346-023-01448-ySearch in Google Scholar
Bakhsheshi-Rad HR, Chen XR, Ismail AF, Aziz A, Hamzah E, Najafinezhad A. A new multifunctional monticellite-ciprofloxacin scaffold: Preparation, bioactivity, biocompatibility, and antibacterial properties. Mater Chem Phys.2019 Sep;222:118–131 https://doi.org/10.1016/j.matchemphys.2018.09.054Bakhsheshi-RadHRChenXRIsmailAFAzizAHamzahENajafinezhadA.A new multifunctional monticellite-ciprofloxacin scaffold: Preparation, bioactivity, biocompatibility, and antibacterial properties. Mater Chem Phys.2019Sep;222:118–131https://doi.org/10.1016/j.matchemphys.2018.09.054Search in Google Scholar
Barros J, Monteiro FJ, Ferraz MP. Bioengineering approaches to fight against orthopedic biomaterials related-infections. Int J Mol Sci. 2022 Oct;23(19):11658. https://doi.org/10.3390/ijms231911658BarrosJMonteiroFJFerrazMP.Bioengineering approaches to fight against orthopedic biomaterials related-infections. Int J Mol Sci. 2022Oct;23(19):11658. https://doi.org/10.3390/ijms231911658Search in Google Scholar
Biomaterials Market. Industry analysis and forecast (2024–2030) trends, statistics, report ID: SMR_1143, 2023 [Internet]. Pune (India): Stellar Market Research [cited 2025 February 14]. Available from https://www.stellarmr.com/report/Biomaterials-Market/1143Biomaterials MarketIndustry analysis and forecast (2024–2030) trends, statistics, report ID: SMR_1143, 2023 [Internet]. Pune (India): Stellar Market Research [cited 2025 February 14]. Available from https://www.stellarmr.com/report/Biomaterials-Market/1143Search in Google Scholar
Budiatin AS, Gani MA, Samirah, Ardianto C, Raharjanti AM, Septiani I, Putri NPKP, Khotib J. Bovine hydroxyapatite-based bone scaffold with gentamicin accelerates vascularization and remodeling of bone defect. Int J Biomater. 2021 May;2021:5560891. https://doi.org/10.1155/2021/5560891BudiatinASGaniMASamirahArdiantoCRaharjantiAMSeptianiIPutriNPKPKhotibJ.Bovine hydroxyapatite-based bone scaffold with gentamicin accelerates vascularization and remodeling of bone defect. Int J Biomater. 2021May;2021:5560891. https://doi.org/10.1155/2021/5560891Search in Google Scholar
Cabral CS, Miguel SP, de Melo-Diogo D, Louro RO, Correia IJ. Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration. Carbon. 2019 Feb;146:513–523. https://doi.org/10.1016/j.carbon.2019.01.100CabralCSMiguelSPde Melo-DiogoDLouroROCorreiaIJ.Green reduced graphene oxide functionalized 3D printed scaffolds for bone tissue regeneration. Carbon. 2019Feb;146:513–523. https://doi.org/10.1016/j.carbon.2019.01.100Search in Google Scholar
Cao D, Xu Z, Chen Y, Ke Q, Zhang C, Guo Y. Ag-loaded MgSr-Fe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):863–873. https://doi.org/10.1002/jbm.b.33900CaoDXuZChenYKeQZhangCGuoY.Ag-loaded MgSr-Fe-layered double hydroxide/chitosan composite scaffold with enhanced osteogenic and antibacterial property for bone engineering tissue. J Biomed Mater Res B Appl Biomater. 2018Feb;106(2):863–873. https://doi.org/10.1002/jbm.b.33900Search in Google Scholar
Caplin JD, García AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019 Jul;93:2–11. https://doi.org/10.1016/j.actbio.2019.01.015CaplinJDGarcíaAJ.Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019Jul;93:2–11. https://doi.org/10.1016/j.actbio.2019.01.015Search in Google Scholar
Chaudhary S, Ali Z, Tehseen M, Haney EF, Pantoja-Angles A, Alshehri S, Wang T, Clancy GJ, Ayach M, Hauser C, et al. Efficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens. Nat Commun. 2023 Mar;14(1):1464. https://doi.org/10.1038/s41467-023-37003-zChaudharySAliZTehseenMHaneyEFPantoja-AnglesAAlshehriSWangTClancyGJAyachMHauserCEfficient in planta production of amidated antimicrobial peptides that are active against drug-resistant ESKAPE pathogens. Nat Commun. 2023Mar;14(1):1464. https://doi.org/10.1038/s41467-023-37003-zSearch in Google Scholar
Chen L, Shao L, Wang F, Huang Y, Gao F. Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 2019 Apr;9(19):10494–10507. https://doi.org/10.1039/c8ra08788aChenLShaoLWangFHuangYGaoF.Enhancement in sustained release of antimicrobial peptide and BMP-2 from degradable three dimensional-printed PLGA scaffold for bone regeneration. RSC Adv. 2019Apr;9(19):10494–10507. https://doi.org/10.1039/c8ra08788aSearch in Google Scholar
Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1935–1947. https://doi.org/10.1080/21691401.2017.1396997ChengTQuHZhangGZhangX.Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol. 2018Dec;46(8):1935–1947. https://doi.org/10.1080/21691401.2017.1396997Search in Google Scholar
Cuérel C, Abrassart S, Billières J, Andrey D, Suva D, Dubois-Ferrière V, Uçkay I. Clinical and epidemiological differences between implant-associated and implant-free orthopaedic infections. Eur J Orthop Surg Traumatol. 2017 Feb;27(2):229–231. https://doi.org/10.1007/s00590-016-1879-3CuérelCAbrassartSBillièresJAndreyDSuvaDDubois-FerrièreVUçkayI.Clinical and epidemiological differences between implant-associated and implant-free orthopaedic infections. Eur J Orthop Surg Traumatol. 2017Feb;27(2):229–231. https://doi.org/10.1007/s00590-016-1879-3Search in Google Scholar
Cui Y, Liu H, Tian Y, Fan Y, Li S, Wang G, Wang Y, Peng C, Wu D. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio. 2022 Aug;16:100409. https://doi.org/10.1016/j.mtbio.2022.100409CuiYLiuHTianYFanYLiSWangGWangYPengCWuD.Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio. 2022Aug;16:100409. https://doi.org/10.1016/j.mtbio.2022.100409Search in Google Scholar
De Mori A, Hafidh M, Mele N, Yusuf R, Cerri G, Gavini E, Tozzi G, Barbu E, Conconi M, Draheim RR, et al. Sustained release from injectable composite gels loaded with silver nanowires designed to combat bacterial resistance in bone regeneration applications. Pharmaceutics. 2019 Mar;11(3):116. https://doi.org/10.3390/pharmaceutics11030116De MoriAHafidhMMeleNYusufRCerriGGaviniETozziGBarbuEConconiMDraheimRRSustained release from injectable composite gels loaded with silver nanowires designed to combat bacterial resistance in bone regeneration applications. Pharmaceutics. 2019Mar;11(3):116. https://doi.org/10.3390/pharmaceutics11030116Search in Google Scholar
Dorati R, DeTrizio A, Modena T, Conti B, Benazzo F, Gastaldi G, Genta I. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals. 2017 Dec;10(4):96. https://doi.org/10.3390/ph10040096DoratiRDeTrizioAModenaTContiBBenazzoFGastaldiGGentaI.Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals. 2017Dec;10(4):96. https://doi.org/10.3390/ph10040096Search in Google Scholar
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarza-deh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res. 2019 Mar;18:185–201. https://doi.org/10.1016/j.jare.2019.03.011Eivazzadeh-KeihanRMalekiAde la GuardiaMBaniMSChenabKKPashazadeh-PanahiPBaradaranBMokhtarza-dehAHamblinMR.Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res. 2019Mar;18:185–201. https://doi.org/10.1016/j.jare.2019.03.011Search in Google Scholar
Fang C, Wong TM, Lau TW, To KK, Wong SS, Leung F. Infection after fracture osteosynthesis – Part I. J Orthop Surg. 2017 Jan;25(1):2309499017692712. https://doi.org/10.1177/2309499017692712FangCWongTMLauTWToKKWongSSLeungF.Infection after fracture osteosynthesis – Part I. J Orthop Surg. 2017Jan;25(1):2309499017692712. https://doi.org/10.1177/2309499017692712Search in Google Scholar
Felice B, Sánchez MA, Socci MC, Sappia LD, Gómez MI, Cruz MK, Felice CJ, Martí M, Pividori MI, Simonelli G, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng C. 2018 Dec;93:724–738. https://doi.org/10.1016/j.msec.2018.08.009FeliceBSánchezMASocciMCSappiaLDGómezMICruzMKFeliceCJMartíMPividoriMISimonelliGControlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Mater Sci Eng C. 2018Dec;93:724–738. https://doi.org/10.1016/j.msec.2018.08.009Search in Google Scholar
Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev. 2021 Dec;179:114008. https://doi.org/10.1016/j.addr.2021.114008GaoXDingJLiaoCXuJLiuXLuW.Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev. 2021Dec;179:114008. https://doi.org/10.1016/j.addr.2021.114008Search in Google Scholar
Ghiasi Tabari P, Sattari A, Mashhadi Keshtiban M, Karkuki Osguei N, Hardy JG, Samadikuchaksaraei A. Injectable hydrogel scaffold incorporating microspheres containing cobalt-doped bioactive glass for bone healing. J Biomed Mater Res. 2024 Dec;112(12):2225–2242. https://doi.org/10.1002/jbm.a.37773Ghiasi TabariPSattariAMashhadi KeshtibanMKarkuki OsgueiNHardyJGSamadikuchaksaraeiA.Injectable hydrogel scaffold incorporating microspheres containing cobalt-doped bioactive glass for bone healing. J Biomed Mater Res. 2024Dec;112(12):2225–2242. https://doi.org/10.1002/jbm.a.37773Search in Google Scholar
Gulati K, Scimeca JC, Ivanovski S, Verron E. Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discovery Today. 2021 Nov;26(11):2734–2742. https://doi.org/10.1016/j.drudis.2021.07.004GulatiKScimecaJCIvanovskiSVerronE.Double-edged sword: Therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discovery Today. 2021Nov;26(11):2734–2742. https://doi.org/10.1016/j.drudis.2021.07.004Search in Google Scholar
Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018 May;111:923–934. https://doi.org/10.1016/j.ijbiomac.2018.01.089HasanAWaibhawGSaxenaVPandeyLM.Nano-biocomposite scaffolds of chitosan carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018May;111:923–934. https://doi.org/10.1016/j.ijbiomac.2018.01.089Search in Google Scholar
Hassani Besheli N, Damoogh S, Zafar B, Mottaghitalab F, Mota-sadizadeh H, Rezaei F, Ali Shokrgozar M, Farokhi M. Preparation of a codelivery system based on vancomycin/silk scaffold containing silk nanoparticle loaded VEGF. ACS Biomater Sci Eng. 2018 Jul;4(8), 2836–2846. https://doi.org/10.1021/acsbiomateri-als.8b00149Hassani BesheliNDamooghSZafarBMottaghitalabFMota-sadizadehHRezaeiFAli ShokrgozarMFarokhiM.Preparation of a codelivery system based on vancomycin/silk scaffold containing silk nanoparticle loaded VEGF. ACS Biomater Sci Eng. 2018Jul;4(8), 2836–2846. https://doi.org/10.1021/acsbiomateri-als.8b00149Search in Google Scholar
He Y, Jin Y, Ying X, Wu Q, Yao S, Li Y, Liu H, Ma G, Wang X. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater. 2020 Apr;7(5):515–525. https://doi.org/10.1093/rb/rbaa015HeYJinYYingXWuQYaoSLiYLiuHMaGWangX.Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair. Regen Biomater. 2020Apr;7(5):515–525. https://doi.org/10.1093/rb/rbaa015Search in Google Scholar
Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T. The clinical impact of bacterial biofilms. Int J Oral Sci. 2011 Apr;3(2):55–65. https://doi.org/10.4248/IJOS11026HøibyNCiofuOJohansenHKSongZJMoserCJensenPØMolinSGivskovMTolker-NielsenTBjarnsholtT.The clinical impact of bacterial biofilms. Int J Oral Sci. 2011Apr;3(2):55–65. https://doi.org/10.4248/IJOS11026Search in Google Scholar
Hussaini IM, Oyewole OA, Sulaiman MA, Dabban AI, Sulaiman AN, Tarek R. Microbial anti-biofilms: Types and mechanism of action. Res Microbiol. 2024 Mar-Apr;175(3):104111. https://doi.org/10.1016/j.resmic.2023.104111HussainiIMOyewoleOASulaimanMADabbanAISulaimanANTarekR.Microbial anti-biofilms: Types and mechanism of action. Res Microbiol. 2024Mar-Apr;175(3):104111. https://doi.org/10.1016/j.resmic.2023.104111Search in Google Scholar
Jayaprakash N, Elumalai K, Manickam S, Bakthavatchalam G, Tamilselvan P. Carbon nanomaterials: Revolutionizing biomedical applications with promising potential. Nano Mater Sci. 2024 Dec; article in press. https://doi.org/10.1016/j.nanoms.2024.11.004JayaprakashNElumalaiKManickamSBakthavatchalamGTamilselvanP.Carbon nanomaterials: Revolutionizing biomedical applications with promising potential. Nano Mater Sci. 2024Dec; article in press. https://doi.org/10.1016/j.nanoms.2024.11.004Search in Google Scholar
Kalbian IL, Goswami K, Tan TL, John N, Foltz C, Parvizi J, Arnold WV. Treatment outcomes and attrition in Gram-negative periprosthetic joint infection. J Arthroplasty. 2020 Mar;35(3):849–854. https://doi.org/10.1016/j.arth.2019.09.044KalbianILGoswamiKTanTLJohnNFoltzCParviziJArnoldWV.Treatment outcomes and attrition in Gram-negative periprosthetic joint infection. J Arthroplasty. 2020Mar;35(3):849–854. https://doi.org/10.1016/j.arth.2019.09.044Search in Google Scholar
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-based scaffolds for tissue engineering applications: A review on graphene, carbon nanotubes and nanocellulose. Tissue Eng Regener Med. 2023 Jun;20(3):411–433. https://doi.org/10.1007/s13770-023-00530-3KandholaGParkSLimJWChiversCSongYHChungJHKimJKimJW.Nanomaterial-based scaffolds for tissue engineering applications: A review on graphene carbon nanotubes and nanocellulose. Tissue Eng Regener Med. 2023Jun;20(3):411–433. https://doi.org/10.1007/s13770-023-00530-3Search in Google Scholar
Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA. Periprosthetic joint infection. Lancet. 2016 Jan;387(10016):386–394. https://doi.org/10.1016/S0140-6736(14)61798-0KapadiaBHBergRADaleyJAFritzJBhaveAMontMA.Periprosthetic joint infection. Lancet. 2016Jan;387(10016):386–394. https://doi.org/10.1016/S0140-6736(14)61798-0Search in Google Scholar
Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens. 2024 Aug;13(8):668. https://doi.org/10.3390/pathogens13080668KaplanJBSukhishviliSASailerMKridinKRamasubbuN.Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens. 2024Aug;13(8):668. https://doi.org/10.3390/pathogens13080668Search in Google Scholar
Karamat-Ullah N, Demidov Y, Schramm M, Grumme D, Auer J, Bohr C, Brachvogel B, Maleki H. 3D Printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modi-fied silk fibroin with silica nanostructure. ACS Biomater Sci Eng. 2021 Sep;7(9):4545–4556. https://doi.org/10.1021/acsbiomateri-als.1c00483Karamat-UllahNDemidovYSchrammMGrummeDAuerJBohrCBrachvogelBMalekiH.3D Printing of antibacterial biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modi-fied silk fibroin with silica nanostructure. ACS Biomater Sci Eng. 2021Sep;7(9):4545–4556. https://doi.org/10.1021/acsbiomateri-als.1c00483Search in Google Scholar
Kennedy DG, O’Mahony AM, Culligan EP, O’Driscoll CM, Ryan KB. Strategies to mitigate and treat orthopaedic device-associated infections. Antibiotics. 2022 Dec;11(12):1822. https://doi.org/10.3390/antibiotics11121822KennedyDGO’MahonyAMCulliganEPO’DriscollCMRyanKB.Strategies to mitigate and treat orthopaedic device-associated infections. Antibiotics. 2022Dec;11(12):1822. https://doi.org/10.3390/antibiotics11121822Search in Google Scholar
Kiselevskiy MV, Anisimova NY, Kapustin AV, Ryzhkin AA, Kuznetsova DN, Polyakova VV, Enikeev NA. Development of bioactive scaffolds for orthopedic applications by designing additively manufactured titanium porous structures: A Critical Review. Biomimetics. 2023 Nov;8(7):546. https://doi.org/10.3390/biomi-metics8070546KiselevskiyMVAnisimovaNYKapustinAVRyzhkinAAKuznetsovaDNPolyakovaVVEnikeevNA.Development of bioactive scaffolds for orthopedic applications by designing additively manufactured titanium porous structures: A Critical Review. Biomimetics. 2023Nov;8(7):546. https://doi.org/10.3390/biomi-metics8070546Search in Google Scholar
Lau JSY, Korman TM, Woolley I. Life-long antimicrobial therapy: where is the evidence? J Antimicrob Chemother. 2018 Oct;73(10):2601–2612. https://10.1093/jac/dky174LauJSYKormanTMWoolleyI.Life-long antimicrobial therapy: where is the evidence?J Antimicrob Chemother. 2018Oct;73(10):2601–2612. https://10.1093/jac/dky174Search in Google Scholar
Lee JH, Baik JM, Yu YS, Kim JH, Ahn CB, Son KH, Kim JH, Choi ES, Lee JW. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci Rep. 2020 May;10(1):7554. https://doi.org/10.1038/s41598-020-64573-5LeeJHBaikJMYuYSKimJHAhnCBSonKHKimJHChoiESLeeJW.Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci Rep. 2020May;10(1):7554. https://doi.org/10.1038/s41598-020-64573-5Search in Google Scholar
Li L, Shi J, Ma K, Jin J, Wang P, Liang H, Cao Y, Wang X, Jiang Q. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res. 2020 Nov;30:75-84. https://doi.org/10.1016/j.jare.2020.11.011LiLShiJMaKJinJWangPLiangHCaoYWangXJiangQ.Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res. 2020Nov;30:75-84. https://doi.org/10.1016/j.jare.2020.11.011Search in Google Scholar
Li M, Zhao P, Wang J, Zhang X, Li J. Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing. Mater Horiz. 2025 Jan 2;12(1):20–36. https://doi.org/10.1039/d4mh01124dLiMZhaoPWangJZhangXLiJ.Functional antimicrobial peptide-loaded 3D scaffolds for infected bone defect treatment with AI and multidimensional printing. Mater Horiz. 2025Jan2;12(1):20–36. https://doi.org/10.1039/d4mh01124dSearch in Google Scholar
Liang W, Zhou C, Bai J, Zhang H, Jiang B, Wang J, Fu L, Long H, Huang X, Zhao J, et al. Current advancements in therapeutic approaches in orthopedic surgery: A review of recent trends. Front Bioeng Biotechnol. 2024 Feb;12:1328997. https://doi.org/10.3389/fbioe.2024.1328997LiangWZhouCBaiJZhangHJiangBWangJFuLLongHHuangXZhaoJCurrent advancements in therapeutic approaches in orthopedic surgery: A review of recent trends. Front Bioeng Biotechnol. 2024Feb;12:1328997. https://doi.org/10.3389/fbioe.2024.1328997Search in Google Scholar
Litowczenko J, Woźniak-Budych MJ, Staszak K, Wieszczycka K, Jurga S, Tylkowski B. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater. 2021 Jan;6(8):2412–2438. https://doi.org/10.1016/j.bioactmat.2021.01.007LitowczenkoJWoźniak-BudychMJStaszakKWieszczyckaKJurgaSTylkowskiB.Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioact Mater. 2021Jan;6(8):2412–2438. https://doi.org/10.1016/j.bioactmat.2021.01.007Search in Google Scholar
Liu Y, Zhao Q, Chen C, Wu C, Ma Y. β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment. PLoS One. 2022 Dec;17(12):e0277522. https://doi.org/10.1371/journal.pone.0277522LiuYZhaoQChenCWuCMaY.β-tricalcium phosphate/gelatin composite scaffolds incorporated with gentamycin-loaded chitosan microspheres for infected bone defect treatment. PLoS One. 2022Dec;17(12):e0277522. https://doi.org/10.1371/journal.pone.0277522Search in Google Scholar
Lu Y, Wang X, Chen H, Li X, Liu H, Wang J, Qian Z. “Metal-bone” scaffold for accelerated peri-implant endosseous healing. Front Bioeng Biotechnol. 2024 Jan;11:1334072. https://doi.org/10.3389/fbioe.2023.1334072LuYWangXChenHLiXLiuHWangJQianZ.“Metal-bone” scaffold for accelerated peri-implant endosseous healing. Front Bioeng Biotechnol. 2024Jan;11:1334072. https://doi.org/10.3389/fbioe.2023.1334072Search in Google Scholar
Lu Z, Wu Y, Cong Z, Qian Y, Wu X, Shao N, Qiao Z, Zhang H, She Y, Chen K, et al. Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater. 2021 May;6(12):4531–4541. https://doi.org/10.1016/j.bioactmat.2021.05.008LuZWuYCongZQianYWuXShaoNQiaoZZhangHSheYChenKEffective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater. 2021May;6(12):4531–4541. https://doi.org/10.1016/j.bioactmat.2021.05.008Search in Google Scholar
Luo Y, Humayun A, Mills DK. Surface modification of 3D printed PLA/Halloysite composite scaffolds with antibacterial and osteogenic capabilities. Appl. Sci. 2020 May;(11):3971. https://doi.org/10.3390/app10113971LuoYHumayunAMillsDK.Surface modification of 3D printed PLA/Halloysite composite scaffolds with antibacterial and osteogenic capabilities. Appl. Sci. 2020May;(11):3971. https://doi.org/10.3390/app10113971Search in Google Scholar
Mahmoudi Z, Sedighi M, Jafari A, Naghieh S, Stefanek E, Akbari M, Savoji H. In situ 3D bioprinting: A promising technique in advanced biofabrication strategies. Bioprinting. 2023 Feb;31:e00260. https://doi.org/10.1016/j.bprint.2023.e00260MahmoudiZSedighiMJafariANaghiehSStefanekEAkbariMSavojiH.In situ 3D bioprinting: A promising technique in advanced biofabrication strategies. Bioprinting. 2023Feb;31:e00260. https://doi.org/10.1016/j.bprint.2023.e00260Search in Google Scholar
Melo SF, Neves SC, Pereira AT, Borges I, Granja PL, Magalhães FD, Gonçalves IC. Incorporation of graphene oxide into poly(?-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Mater Sci Eng C. 2020 Apr;109:110537. https://doi.org/10.1016/j.msec.2019.110537MeloSFNevesSCPereiraATBorgesIGranjaPLMagalhãesFDGonçalvesIC.Incorporation of graphene oxide into poly(?-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Mater Sci Eng C. 2020Apr;109:110537. https://doi.org/10.1016/j.msec.2019.110537Search in Google Scholar
Min KH, Kim KH, Ki MR, Pack SP. Antimicrobial peptides and their biomedical applications: A review. Antibiotics. 2024 Aug;13(9):794. https://doi.org/10.3390/antibiotics13090794MinKHKimKHKiMRPackSP.Antimicrobial peptides and their biomedical applications: A review. Antibiotics. 2024Aug;13(9):794. https://doi.org/10.3390/antibiotics13090794Search in Google Scholar
Momodu II, Savaliya V. Osteomyelitis [Internet, updated 2023 May 31]. Treasure Island (USA): StatPearls Publishing; 2023 [cited 2025 February 14]. Available from https://www.ncbi.nlm.nih.gov/books/NBK532250MomoduIISavaliyaV.Osteomyelitis [Internet, updated 2023 May 31]. Treasure Island (USA): StatPearls Publishing; 2023 [cited 2025 February 14]. Available from https://www.ncbi.nlm.nih.gov/books/NBK532250Search in Google Scholar
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov. 2020 May;19(5):311–332. https://doi.org/10.1038/s41573-019-0058-8MookherjeeNAndersonMAHaagsmanHPDavidsonDJ.Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov. 2020May;19(5):311–332. https://doi.org/10.1038/s41573-019-0058-8Search in Google Scholar
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol. 2021 Jun;11:668632. https://doi.org/10.3389/fcimb.2021.668632MorettaAScieuzoCPetroneAMSalviaRMannielloMDFrancoALucchettiDVassalloAVogelHSgambatoAAntimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol. 2021Jun;11:668632. https://doi.org/10.3389/fcimb.2021.668632Search in Google Scholar
Olmo JAD, Ruiz-Rubio L, Pérez-Alvarez L, Sáez-Martínez V, Vilas-Vilela JL. Antibacterial coatings for improving the performance of biomaterials. Coatings. 2020 Feb;10(2):139. https://doi.org/10.3390/coatings10020139OlmoJADRuiz-RubioLPérez-AlvarezLSáez-MartínezVVilas-VilelaJL.Antibacterial coatings for improving the performance of biomaterials. Coatings. 2020Feb;10(2):139. https://doi.org/10.3390/coatings10020139Search in Google Scholar
Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, Rao N, Hanssen A, Wilson WR; Infectious Diseases Society of America. Diagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013 Jan;56(1):e1–e25. https://doi.org/10.1093/cid/cis803OsmonDRBerbariEFBerendtARLewDZimmerliWSteckelbergJMRaoNHanssenAWilsonWRInfectious Diseases Society of AmericaDiagnosis and management of prosthetic joint infection: Clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013Jan;56(1):e1–e25. https://doi.org/10.1093/cid/cis803Search in Google Scholar
Pérez-Davila S, Potel-Alvarellos C, Carballo R, González-Rodríguez L, López-Álvarez M, Serra J, Díaz-Rodríguez P, Landín M, González P. Vancomycin-loaded 3D-printed polylactic acid-hydroxyapatite scaffolds for bone tissue engineering. Polymers. 2023 Oct;15(21):4250. https://doi.org/10.3390/polym15214250Pérez-DavilaSPotel-AlvarellosCCarballoRGonzález-RodríguezLLópez-ÁlvarezMSerraJDíaz-RodríguezPLandínMGonzálezP.Vancomycin-loaded 3D-printed polylactic acid-hydroxyapatite scaffolds for bone tissue engineering. Polymers. 2023Oct;15(21):4250. https://doi.org/10.3390/polym15214250Search in Google Scholar
Pietrocola G, Campoccia D, Motta C, Montanaro L, Arciola CR, Speziale P. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants. Int J Mol Sci. 2022 May;23(11):5958. https://doi.org/10.3390/ijms23115958PietrocolaGCampocciaDMottaCMontanaroLArciolaCRSpezialeP.Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants. Int J Mol Sci. 2022May;23(11):5958. https://doi.org/10.3390/ijms23115958Search in Google Scholar
Pirisi L, Pennestrì F, Viganò M, Banfi G. Prevalence and burden of orthopaedic implantable-device infections in Italy: A hospital-based national study. BMC Infect Dis. 2020 May;20(1):337. https://doi.org/10.1186/s12879-020-05065-9PirisiLPennestrìFViganòMBanfiG.Prevalence and burden of orthopaedic implantable-device infections in Italy: A hospital-based national study. BMC Infect Dis. 2020May;20(1):337. https://doi.org/10.1186/s12879-020-05065-9Search in Google Scholar
Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, et al. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res. 2024 May;12(1):28. https://doi.org/10.1038/s41413-024-00332-wQinLYangSZhaoCYangJLiFXuZYangYZhouHLiKXiongCProspects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res. 2024May;12(1):28. https://doi.org/10.1038/s41413-024-00332-wSearch in Google Scholar
Rather MA, Gupta K, Mandal M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021 Dec;52(4):1701–1718. https://doi.org/10.1007/s42770-021-00624-xRatherMAGuptaKMandalM.Microbial biofilm: Formation, architecture, antibioti cresistance and control strategies. Braz J Microbiol. 2021Dec;52(4):1701–1718. https://doi.org/10.1007/s42770-021-00624-xSearch in Google Scholar
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Wagner WR, Sakiyama-Elbert SE, Zhang G, Yaszemski MJ. Introduction to biomaterials science: An evolving, multidisciplinary endeavor. In: Wagner WR, Sakiyama-Elbert SE, Zhang G, and Yaszemski MJ, editors. Biomaterials science: An introduction to materials in medicine. Cambridge (USA): Academic Press; 2020. p. 3–19. https://doi.org/10.1016/B978-0-12-816137-1.00001-5RatnerBDHoffmanASSchoenFJLemonsJEWagnerWRSakiyama-ElbertSEZhangGYaszemskiMJ.Introduction to biomaterials science: An evolving, multidisciplinary endeavor. In: WagnerWRSakiyama-ElbertSEZhangGYaszemskiMJ, editors. Biomaterials science: An introduction to materials in medicine. Cambridge (USA): Academic Press; 2020. p. 3–19. https://doi.org/10.1016/B978-0-12-816137-1.00001-5Search in Google Scholar
Renz N, Feihl S, Dlaska CE, Schütz MA, Trampuz A. [Osteosynthesis-associated infections: Epidemiology, definition and diagnosis] (in German). Unfallchirurg. 2017 Jun;120(6):454–460. https://doi.org/10.1007/s00113-017-0364-8RenzNFeihlSDlaskaCESchützMATrampuzA.[Osteosynthesis-associated infections: Epidemiology, definition and diagnosis] (in German). Unfallchirurg. 2017Jun;120(6):454–460. https://doi.org/10.1007/s00113-017-0364-8Search in Google Scholar
Rosas S, Ong AC, Buller LT, Sabeh KG, Law TY, Roche MW, Hernandez VH. Season of the year influences infection rates following total hip arthroplasty. World J Orthop. 2017 Dec;8(12):895–901. https://doi.org/10.5312/wjo.v8.i12.895RosasSOngACBullerLTSabehKGLawTYRocheMWHernandezVH.Season of the year influences infection rates following total hip arthroplasty. World J Orthop. 2017Dec;8(12):895–901. https://doi.org/10.5312/wjo.v8.i12.895Search in Google Scholar
Rozis M, Evangelopoulos DS, Pneumaticos SG. Orthopedic implant-related biofilm pathophysiology: A review of the literature. Cureus. 2021 Jun;13(6):e15634. https://doi.org/10.7759/cu-reus.15634RozisMEvangelopoulosDSPneumaticosSG.Orthopedic implant-related biofilm pathophysiology: A review of the literature. Cureus. 2021Jun;13(6):e15634. https://doi.org/10.7759/cu-reus.15634Search in Google Scholar
Sarigol-Calamak E, Hascicek C. Tissue scaffolds as a local drug delivery system for bone regeneration. Adv Exp Med Biol. 2018;1078:475–493. https://doi.org/10.1007/978-981-13-0950-2_25Sarigol-CalamakEHascicekC.Tissue scaffolds as a local drug delivery system for bone regeneration. Adv Exp Med Biol. 2018;1078:475–493. https://doi.org/10.1007/978-981-13-0950-2_25Search in Google Scholar
Schwarz EM, Parvizi J, Gehrke T, Aiyer A, Battenberg A, Brown SA, Callaghan JJ, Citak M, Egol K, Garrigues GE, et al. 2018 International consensus meeting on musculoskeletal infection: Research priorities from the general assembly questions. J Orthop Res. 2019 May;37(5):997–1006. https://doi.org/10.1002/jor.24293SchwarzEMParviziJGehrkeTAiyerABattenbergABrownSACallaghanJJCitakMEgolKGarriguesGE2018 International consensus meeting on musculoskeletal infection: Research priorities from the general assembly questions. J Orthop Res. 2019May;37(5):997–1006. https://doi.org/10.1002/jor.24293Search in Google Scholar
Sehgal RR, Carvalho E, Banerjee R. Mechanically stiff, zinc crosslinked nanocomposite scaffolds with improved osteostimulation and antibacterial properties. ACS Appl Mater Interfaces. 2016 Jun;8(22):13735–13747. https://doi.org/10.1021/acsami.6b02740SehgalRRCarvalhoEBanerjeeR.Mechanically stiff zinc crosslinked nanocomposite scaffolds with improved osteostimulation and antibacterial properties. ACS Appl Mater Interfaces. 2016Jun;8(22):13735–13747. https://doi.org/10.1021/acsami.6b02740Search in Google Scholar
Shah NB, Hersh BL, Kreger A, Sayeed A, Bullock AG, Rothen-berger SD, Klatt B, Hamlin B, Urish KL. Benefits and adverse events associated with extended antibiotic use in total knee arthroplasty periprosthetic joint infection. Clin Infect Dis. 2020 Feb;70(4):559–565. https://doi.org/10.1093/cid/ciz261ShahNBHershBLKregerASayeedABullockAGRothen-bergerSDKlattBHamlinBUrishKL.Benefits and adverse events associated with extended antibiotic use in total knee arthroplasty periprosthetic joint infection. Clin Infect Dis. 2020Feb;70(4):559–565. https://doi.org/10.1093/cid/ciz261Search in Google Scholar
Shen M, Wang L, Gao Y, Feng L, Xu C, Li S, Wang X, Wu Y, Guo Y, Pei G. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio. 2022 Aug;16:100382. https://doi.org/10.1016/j.mtbio.2022.100382ShenMWangLGaoYFengLXuCLiSWangXWuYGuoYPeiG.3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio. 2022Aug;16:100382. https://doi.org/10.1016/j.mtbio.2022.100382Search in Google Scholar
Shrestha BK, Shrestha S, Tiwari AP, Kim JI, Ko SW, Kim HJ, Park CH, Kim CS. Bio-inspired hybrid scaffold of zinc oxide-function-alized multi-wall carbon nanotubes reinforced polyurethane nano-fibersfor bone tissue engineering. Mater. Des. 2017 Jul;133:69–81. https://doi.org/10.1016/j.matdes.2017.07.049ShresthaBKShresthaSTiwariAPKimJIKoSWKimHJParkCHKimCS.Bio-inspired hybrid scaffold of zinc oxide-function-alized multi-wall carbon nanotubes reinforced polyurethane nano-fibersfor bone tissue engineering. Mater. Des. 2017Jul;133:69–81. https://doi.org/10.1016/j.matdes.2017.07.049Search in Google Scholar
Shuai C, Wang C, Qi F, Shuping P, Yang W, He C, Wang G, Qian G. Enhanced crystallinity and antibacterial of PHBV scaffolds incorporated with zinc oxide. J Nanomater. 2020 Jul;:6014816. https://doi.org/10.1155/2020/6014816ShuaiCWangCQiFShupingPYangWHeCWangGQianG.Enhanced crystallinity and antibacterial of PHBV scaffolds incorporated with zinc oxide. J Nanomater. 2020Jul;:6014816. https://doi.org/10.1155/2020/6014816Search in Google Scholar
Sun J, Tan H, Liu H, Jin D, Yin M, Lin H, Qu X, Liu C. A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomater Sci. 2020 Dec;8(24):6946–6956. https://doi.org/10.1039/d0bm01213kSunJTanHLiuHJinDYinMLinHQuXLiuC.A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomater Sci. 2020Dec;8(24):6946–6956. https://doi.org/10.1039/d0bm01213kSearch in Google Scholar
Tian L, Zhang Z, Tian B, Zhang X, Wang N. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Adv. 2020 Jan;10(8):4805–4816. https://doi.org/10.1039/c9ra10275bTianLZhangZTianBZhangXWangN.Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Adv. 2020Jan;10(8):4805–4816. https://doi.org/10.1039/c9ra10275bSearch in Google Scholar
Valour F, Karsenty J, Bouaziz A, Ader F, Tod M, Lustig S, Laurent F, Ecochard R, Chidiac C, Ferry T; Lyon BJI Study Group. Antimicrobial-related severe adverse events during treatment of bone and joint infection due to methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2014 Jan;58(2):746–755. https://doi.org/10.1128/aac.02032-13ValourFKarsentyJBouazizAAderFTodMLustigSLaurentFEcochardRChidiacCFerryTLyon BJI Study GroupAntimicrobial-related severe adverse events during treatment of bone and joint infection due to methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother. 2014Jan;58(2):746–755. https://doi.org/10.1128/aac.02032-13Search in Google Scholar
Wei J, Wang Y, Jiang J, Yan Y, Fan D, Yang X, Zuo Y, Li Y, Gu H, Li J. Development of an antibacterial bone graft by immobilization of levofloxacin hydrochloride-loaded mesoporous silica microspheres on a porous scaffold surface. J Biomed Nanotechnol. 2019 May;15(5):1097-1105. https://doi.org/10.1166/jbn.2019.2743WeiJWangYJiangJYanYFanDYangXZuoYLiYGuHLiJ.Development of an antibacterial bone graft by immobilization of levofloxacin hydrochloride-loaded mesoporous silica microspheres on a porous scaffold surface. J Biomed Nanotechnol. 2019May;15(5):1097-1105. https://doi.org/10.1166/jbn.2019.2743Search in Google Scholar
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B. 2023 Dec;11(48):11405–11425. https://doi.org/10.1039/d3tb01874aWenXWangJPeiXZhangX.Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B. 2023Dec;11(48):11405–11425. https://doi.org/10.1039/d3tb01874aSearch in Google Scholar
Xu H, Shen M, Shang H, Xu W, Zhang S, Yang HR, Zhou D, Hak-karainen M. Osteoconductive and antibacterial poly(lactic acid) fibrous membranes impregnated with biobased nanocarbons for biodegradable bone regenerative scaffolds. Ind Eng Chem Res. 2021 Aug;60(32):12021–12031 https://doi.org/10.1021/acs.iecr.1c02165XuHShenMShangHXuWZhangSYangHRZhouDHak-karainenM.Osteoconductive and antibacterial poly(lactic acid) fibrous membranes impregnated with biobased nanocarbons for biodegradable bone regenerative scaffolds. Ind Eng Chem Res. 2021Aug;60(32):12021–12031https://doi.org/10.1021/acs.iecr.1c02165Search in Google Scholar
Yang Y, Wang J, Huang S, Li M, Chen J, Pei D, Tang Z, Guo B. Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing. Natl Sci Rev. 2024 Jan;11(4):nwae044. https://doi.org/10.1093/nsr/nwae044YangYWangJHuangSLiMChenJPeiDTangZGuoB.Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing. Natl Sci Rev. 2024Jan;11(4):nwae044. https://doi.org/10.1093/nsr/nwae044Search in Google Scholar
Ye Z, Zhu X, Mutreja I, Boda SK, Fischer NG, Zhang A, Lui C, Qi Y, Aparicio C. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact Mater. 2021 Jan;6(8):2250–2260. https://doi.org/10.1016/j.bioactmat.2020.12.029YeZZhuXMutrejaIBodaSKFischerNGZhangALuiCQiYAparicioC.Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact Mater. 2021Jan;6(8):2250–2260. https://doi.org/10.1016/j.bioactmat.2020.12.029Search in Google Scholar
Zhang N, Wang Z, Zeng Y, Guo Y, Wang L, Liu J, Wang Y, Zhan P. Butterfly metamorphosis inspired injectable in situ forming scaffolds with time-dependent pore formation for bone regeneration. J Mater Sci. 2023 Apr;58:7456–7468. https://doi.org/10.1007/s10853-023-08466-8ZhangNWangZZengYGuoYWangLLiuJWangYZhanP.Butterfly metamorphosis inspired injectable in situ forming scaffolds with time-dependent pore formation for bone regeneration. J Mater Sci. 2023Apr;58:7456–7468. https://doi.org/10.1007/s10853-023-08466-8Search in Google Scholar
Zhang Y, Zhai D, Xu M, Yao Q, Zhu H, Chang J, Wu C. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017 Jun;9(2):025037. https://doi.org/10.1088/1758-5090/aa6ed6ZhangYZhaiDXuMYaoQZhuHChangJWuC.3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017Jun;9(2):025037. https://doi.org/10.1088/1758-5090/aa6ed6Search in Google Scholar
Zhao C, Liu W, Zhu M, Wu C, Zhu Y. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact Mater. 2022 Feb;18:383–398. https://doi.org/10.1016/j.bio-actmat.2022.02.010ZhaoCLiuWZhuMWuCZhuY.Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioact Mater. 2022Feb;18:383–398. https://doi.org/10.1016/j.bio-actmat.2022.02.010Search in Google Scholar
Zhou J, Zhou XG, Wang JW, Zhou H, Dong J. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res. 2018a Jan;7(1):46–57. https://doi.org/10.1302/2046-3758.71.bjr-2017-0129.r2ZhouJZhouXGWangJWZhouHDongJ.Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res. 2018aJan;7(1):46–57. https://doi.org/10.1302/2046-3758.71.bjr-2017-0129.r2Search in Google Scholar
Zhou Z, Yao Q, Li L, Zhang X, Wei B, Yuan L, Wang L. Antimicrobial activity of 3D-printed poly(ε-caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med Sci Monit. 2018b Sep;24:6934–6945. https://doi.org/10.12659/msm.911770ZhouZYaoQLiLZhangXWeiBYuanLWangL.Antimicrobial activity of 3D-printed poly(ε-caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med Sci Monit. 2018bSep;24:6934–6945. https://doi.org/10.12659/msm.911770Search in Google Scholar
Zhu T, Zhu M, Zhu Y. Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceram Int. 2020 Jun;46(9):13607–13614. https://doi.org/10.1016/j.ceramint.2020.02.146ZhuTZhuMZhuY.Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceram Int. 2020Jun;46(9):13607–13614. https://doi.org/10.1016/j.ceramint.2020.02.146Search in Google Scholar
Zimmerli W. Clinical presentation and treatment of orthopaedic implant-associated infection. J Intern Med. 2014 Aug;276(2):111–119. https://doi.org/10.1111/joim.12233ZimmerliW.Clinical presentation and treatment of orthopaedic implant-associated infection. J Intern Med. 2014Aug;276(2):111–119. https://doi.org/10.1111/joim.12233Search in Google Scholar