INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abdi-Ali A, Worobec EA, Deezagi A, Malekzadeh F. Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Can J Microbiol. 2004 May 01;50(5):375–381. https://doi.org/10.1139/w04-019Abdi-AliAWorobecEADeezagiAMalekzadehF. Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Can J Microbiol. 2004May01;50(5):375381. https://doi.org/10.1139/w04-01910.1139/w04-01915213746Search in Google Scholar

Abriouel H, Franz CMAP, Omar NB, Gálvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011 Jan;35(1):201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.xAbriouelHFranzCMAPOmarNBGálvezA. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 2011Jan;35(1):201232. https://doi.org/10.1111/j.1574-6976.2010.00244.x10.1111/j.1574-6976.2010.00244.x20695901Search in Google Scholar

Al-Madboly LA, El-Deeb NM, Kabbash A, Nael MA, Kenawy AM, Ragab AE. Purification, characterization, identification, and anticancer activity of a circular bacteriocin from Enterococcus thailandicus. Front Bioeng Biotechnol. 2020 Jun 23;8:450. https://doi.org/10.3389/fbioe.2020.00450Al-MadbolyLAEl-DeebNMKabbashANaelMAKenawyAMRagabAE. Purification, characterization, identification, and anticancer activity of a circular bacteriocin from Enterococcus thailandicus. Front Bioeng Biotechnol. 2020Jun23;8:450. https://doi.org/10.3389/fbioe.2020.0045010.3389/fbioe.2020.00450732480332656185Search in Google Scholar

Almeida PF, Pokorny A. Interactions of antimicrobial peptides with lipid bilayers. In: Egelman EH, editor. Comprehensive Biophysics. Amsterdam (Netherlands): Elsevier; 2012. p. 189–222. https://doi.org/10.1016/B978-0-12-374920-8.00515-4AlmeidaPFPokornyA. Interactions of antimicrobial peptides with lipid bilayers. In: EgelmanEH, editor. Comprehensive Biophysics. Amsterdam (Netherlands): Elsevier; 2012. p. 189222. https://doi.org/10.1016/B978-0-12-374920-8.00515-410.1016/B978-0-12-374920-8.00515-4Search in Google Scholar

Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. 2016 Apr;100(7):2939–2951. https://doi.org/10.1007/s00253-016-7343-9Alvarez-SieiroPMontalbán-LópezMMuDKuipersOP. Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol. 2016Apr;100(7):29392951. https://doi.org/10.1007/s00253-016-7343-910.1007/s00253-016-7343-9478659826860942Search in Google Scholar

Anastasiou R, Aktypis A, Georgalaki M, Papadelli M, De Vuyst L, Tsakalidou E. Inhibition of Clostridium tyrobutyricum by Streptococcus macedonicus ACA-DC 198 under conditions mimicking Kasseri cheese production and ripening. Int Dairy J. 2009 May;19(5): 330–335. https://doi.org/10.1016/j.idairyj.2008.12.001AnastasiouRAktypisAGeorgalakiMPapadelliMDe VuystLTsakalidouE. Inhibition of Clostridium tyrobutyricum by Streptococcus macedonicus ACA-DC 198 under conditions mimicking Kasseri cheese production and ripening. Int Dairy J. 2009May;19(5): 330335. https://doi.org/10.1016/j.idairyj.2008.12.00110.1016/j.idairyj.2008.12.001Search in Google Scholar

Atanaskovic I, Kleanthous C. Tools and approaches for dissecting protein bacteriocin import in Gram-Negative bacteria. Front Microbiol. 2019 Mar 28;10:646. https://doi.org/10.3389/fmicb.2019.00646AtanaskovicIKleanthousC. Tools and approaches for dissecting protein bacteriocin import in Gram-Negative bacteria. Front Microbiol. 2019Mar28;10:646. https://doi.org/10.3389/fmicb.2019.0064610.3389/fmicb.2019.00646645510931001227Search in Google Scholar

Baindara P, Korpole S, Grover V. Bacteriocins: perspective for the development of novel anticancer drugs. Appl Microbiol Biotechnol. 2018 Dec;102(24):10393–10408. https://doi.org/10.1007/s00253-018-9420-8BaindaraPKorpoleSGroverV. Bacteriocins: perspective for the development of novel anticancer drugs. Appl Microbiol Biotechnol. 2018Dec;102(24):1039310408. https://doi.org/10.1007/s00253-018-9420-810.1007/s00253-018-9420-830338356Search in Google Scholar

Baindara P, Singh N, Ranjan M, Nallabelli N, Chaudhry V, Pathania GL, Sharma N, Kumar A, Patil PB, Korpole S. Laterosporulin10: a novel defensin like Class IId bacteriocin from Brevibacillus sp. strain SKDU10 with inhibitory activity against microbial pathogens. Microbiology. 2016 Aug 01;162(8):1286–1299. https://doi.org/10.1099/mic.0.000316BaindaraPSinghNRanjanMNallabelliNChaudhryVPathaniaGLSharmaNKumarAPatilPBKorpoleS. Laterosporulin10: a novel defensin like Class IId bacteriocin from Brevibacillus sp. strain SKDU10 with inhibitory activity against microbial pathogens. Microbiology. 2016Aug01;162(8):12861299. https://doi.org/10.1099/mic.0.00031610.1099/mic.0.00031627267959Search in Google Scholar

Balandin SV, Sheremeteva EV, Ovchinnikova TV. Pediocin-like antimicrobial peptides of bacteria. Biochemistry (Mosc). 2019 May; 84(5):464–478. https://doi.org/10.1134/S000629791905002XBalandinSVSheremetevaEVOvchinnikovaTV. Pediocin-like antimicrobial peptides of bacteria. Biochemistry (Mosc). 2019May; 84(5):464478. https://doi.org/10.1134/S000629791905002X10.1134/S000629791905002X31234762Search in Google Scholar

Balciunas EM, Castillo Martinez FA, Todorov SD, Franco BDGM, Converti A, Oliveira RPS. Novel biotechnological applications of bacteriocins: a review. Food Control. 2013 Jul;32(1):134–142. https://doi.org/10.1016/j.foodcont.2012.11.025BalciunasEMCastillo MartinezFATodorovSDFrancoBDGMConvertiAOliveiraRPS. Novel biotechnological applications of bacteriocins: a review. Food Control. 2013Jul;32(1):134142. https://doi.org/10.1016/j.foodcont.2012.11.02510.1016/j.foodcont.2012.11.025Search in Google Scholar

Baquero F, Lanza VF, Baquero MR, del Campo R, Bravo-Vázquez DA. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front Microbiol. 2019 Oct 9;10:2261. https://doi.org/10.3389/fmicb.2019.02261BaqueroFLanzaVFBaqueroMRdel CampoRBravo-VázquezDA. Microcins in Enterobacteriaceae: peptide antimicrobials in the eco-active intestinal chemosphere. Front Microbiol. 2019Oct9;10:2261. https://doi.org/10.3389/fmicb.2019.0226110.3389/fmicb.2019.02261679508931649628Search in Google Scholar

Bédard F, Biron E. Recent progress in the chemical synthesis of class II and S-glycosylated bacteriocins. Front Microbiol. 2018 May 23;9:1048. https://doi.org/10.3389/fmicb.2018.01048BédardFBironE. Recent progress in the chemical synthesis of class II and S-glycosylated bacteriocins. Front Microbiol. 2018May23;9:1048. https://doi.org/10.3389/fmicb.2018.0104810.3389/fmicb.2018.01048597409729875754Search in Google Scholar

Behrens HM, Six A, Walker D, Kleanthous C. The therapeutic potential of bacteriocins as protein antibiotics. Emerging Top Life Sci. 2017 Apr 21;1(1):65–74. https://doi.org/10.1042/ETLS20160016BehrensHMSixAWalkerDKleanthousC. The therapeutic potential of bacteriocins as protein antibiotics. Emerging Top Life Sci. 2017Apr21;1(1):6574. https://doi.org/10.1042/ETLS2016001610.1042/ETLS20160016724328233525816Search in Google Scholar

Benabbou R, Subirade M, Desbiens M, Fliss I. Divergicin M35-chitosan film: development and characterization. Probiotics Antimicrob Proteins. 2020 Dec;12(4):1562–1570. https://doi.org/10.1007/s12602-020-09660-9BenabbouRSubiradeMDesbiensMFlissI. Divergicin M35-chitosan film: development and characterization. Probiotics Antimicrob Proteins. 2020Dec;12(4):15621570. https://doi.org/10.1007/s12602-020-09660-910.1007/s12602-020-09660-932430585Search in Google Scholar

Bengtsson T, Lönn J, Khalaf H, Palm E. The lantibiotic gallidermin acts bactericidal against Staphylococcus epidermidis and Staphylococcus aureus and antagonizes the bacteria‐induced proinflammatory responses in dermal fibroblasts. MicrobiologyOpen. 2018 Dec; 7(6):e00606. https://doi.org/10.1002/mbo3.606BengtssonTLönnJKhalafHPalmE. The lantibiotic gallidermin acts bactericidal against Staphylococcus epidermidis and Staphylococcus aureus and antagonizes the bacteria‐induced proinflammatory responses in dermal fibroblasts. MicrobiologyOpen. 2018Dec; 7(6):e00606. https://doi.org/10.1002/mbo3.60610.1002/mbo3.606629178429536668Search in Google Scholar

Bengtsson T, Selegård R, Musa A, Hultenby K, Utterström J, Sivlér P, Skog M, Nayeri F, Hellmark B, Söderquist B, et al. Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics. Sci Rep. 2020 Dec; 10(1):3580. https://doi.org/10.1038/s41598-020-60570-wBengtssonTSelegårdRMusaAHultenbyKUtterströmJSivlérPSkogMNayeriFHellmarkBSöderquistB, Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics. Sci Rep. 2020Dec; 10(1):3580. https://doi.org/10.1038/s41598-020-60570-w10.1038/s41598-020-60570-w704673332107445Search in Google Scholar

Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61(2):160–174. https://doi.org/10.1159/000342079Bermudez-BritoMPlaza-DíazJMuñoz-QuezadaSGómez-LlorenteCGilA. Probiotic mechanisms of action. Ann Nutr Metab. 2012;61(2):160174. https://doi.org/10.1159/00034207910.1159/00034207923037511Search in Google Scholar

Bogovič Matijašić B, Koman Rajšp M, Perko B, Rogelj I. Inhibition of Clostridium tyrobutyricum in cheese by Lactobacillus gasseri. Int Dairy J. 2007 Feb;17(2):157–166. https://doi.org/10.1016/j.idairyj.2006.01.011Bogovič MatijašićBKoman RajšpMPerkoBRogeljI. Inhibition of Clostridium tyrobutyricum in cheese by Lactobacillus gasseri. Int Dairy J. 2007Feb;17(2):157166. https://doi.org/10.1016/j.idairyj.2006.01.01110.1016/j.idairyj.2006.01.011Search in Google Scholar

Bonelli RR, Schneider T, Sahl HG, Wiedemann I. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob Agents Chemother. 2006 Apr;50(4): 1449–1457. https://doi.org/10.1128/AAC.50.4.1449-1457.2006BonelliRRSchneiderTSahlHGWiedemannI. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob Agents Chemother. 2006Apr;50(4): 14491457. https://doi.org/10.1128/AAC.50.4.1449-1457.200610.1128/AAC.50.4.1449-1457.2006142692516569864Search in Google Scholar

Bosák J, Hrala M, Micenková L, Šmajs D. Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther. 2021 Mar;19(3):309–322. https://doi.org/10.1080/14787210.2020.1816824BosákJHralaMMicenkováLŠmajsD. Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther. 2021Mar;19(3):309322. https://doi.org/10.1080/14787210.2020.181682410.1080/14787210.2020.181682432856960Search in Google Scholar

Budič M, Rijavec M, Petkovšek Ž, Žgur-Bertok D. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One. 2011 Dec 19;6(12): e28769. https://doi.org/10.1371/journal.pone.0028769BudičMRijavecMPetkovšekŽŽgur-BertokD. Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One. 2011Dec19;6(12): e28769. https://doi.org/10.1371/journal.pone.002876910.1371/journal.pone.0028769324275522205967Search in Google Scholar

Carlin Fagundes P, Miceli de Farias F, Cabral da Silva Santos O, Souza da Paz JA, Ceotto-Vigoder H, Sales Alviano D, Villela Romanos MT, de Freire Bastos MC. The four-component aureocin A70 as a promising agent for food biopreservation. Int J Food Microbiol. 2016 Nov;237:39–46. https://doi.org/10.1016/j.ijfoodmicro.2016.08.017Carlin FagundesPMiceli de FariasFCabral da Silva SantosOSouza da PazJACeotto-VigoderHSales AlvianoDVillela RomanosMTde Freire BastosMC. The four-component aureocin A70 as a promising agent for food biopreservation. Int J Food Microbiol. 2016Nov;237:3946. https://doi.org/10.1016/j.ijfoodmicro.2016.08.01710.1016/j.ijfoodmicro.2016.08.01727543814Search in Google Scholar

Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo G. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms. 2017 Jul 11;5(3):38. https://doi.org/10.3390/microorganisms5030038CastellanoPPérez IbarrecheMBlanco MassaniMFontanaCVignoloG. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms. 2017Jul11;5(3):38. https://doi.org/10.3390/microorganisms503003810.3390/microorganisms5030038562062928696370Search in Google Scholar

Cebrián R, Rodríguez-Cabezas ME, Martín-Escolano R, Rubiño S, Garrido-Barros M, Montalbán-López M, Rosales MJ, Sánchez-Moreno M, Valdivia E, Martínez-Bueno M, et al. Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res. 2019 Nov;20:129–139. https://doi.org/10.1016/j.jare.2019.06.003CebriánRRodríguez-CabezasMEMartín-EscolanoRRubiñoSGarrido-BarrosMMontalbán-LópezMRosalesMJSánchez-MorenoMValdiviaEMartínez-BuenoM, Preclinical studies of toxicity and safety of the AS-48 bacteriocin. J Adv Res. 2019Nov;20:129139. https://doi.org/10.1016/j.jare.2019.06.00310.1016/j.jare.2019.06.003663714031360546Search in Google Scholar

Cesa-Luna C, Baez A, Quintero-Hernández V, De la Cruz-Enríquez J, Castañeda-Antonio MD, Muñoz-Rojas J. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biol Colomb. 2020 Jan 01;25(1):140–154. https://doi.org/10.15446/abc.v25n1.76867Cesa-LunaCBaezAQuintero-HernándezVDe la Cruz-EnríquezJCastañeda-AntonioMDMuñoz-RojasJ. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biol Colomb. 2020Jan01;25(1):140154. https://doi.org/10.15446/abc.v25n1.7686710.15446/abc.v25n1.76867Search in Google Scholar

Chen SW, Liu CH, Hu SY. Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019 Jan;84:695–703. https://doi.org/10.1016/j.fsi.2018.10.059ChenSWLiuCHHuSY. Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and Streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2019Jan;84:695703. https://doi.org/10.1016/j.fsi.2018.10.05910.1016/j.fsi.2018.10.05930368025Search in Google Scholar

Chowdhury SP, Hartmann A, Gao X, Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front Microbiol. 2015 Jul 28;6:780. https://doi.org/10.3389/fmicb.2015.00780ChowdhurySPHartmannAGaoXBorrissR. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 – a review. Front Microbiol. 2015Jul28;6:780. https://doi.org/10.3389/fmicb.2015.0078010.3389/fmicb.2015.00780451707026284057Search in Google Scholar

Cotter PD, Ross RP, Hill C. Bacteriocins – a viable alternative to antibiotics? Nat Rev Microbiol. 2013 Feb;11(2):95–105. https://doi.org/10.1038/nrmicro2937CotterPDRossRPHillC. Bacteriocins – a viable alternative to antibiotics?Nat Rev Microbiol. 2013Feb;11(2):95105. https://doi.org/10.1038/nrmicro293710.1038/nrmicro293723268227Search in Google Scholar

Daba GM, Elkhateeb WA. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: current applications and future prospects. Biocatal Agric Biotechnol. 2020 Sep;28(28):101750. https://doi.org/10.1016/j.bcab.2020.101750DabaGMElkhateebWA. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: current applications and future prospects. Biocatal Agric Biotechnol. 2020Sep;28(28):101750. https://doi.org/10.1016/j.bcab.2020.10175010.1016/j.bcab.2020.101750Search in Google Scholar

David OM, Onifade OE. Effects of partially purified enterocins from Enterococcus faecalis strains on the growth of some phytopathogenic fungi. Ruhuna J Sci. 2018 Dec 31;9(2):160–168. https://doi.org/10.4038/rjs.v9i2.44DavidOMOnifadeOE. Effects of partially purified enterocins from Enterococcus faecalis strains on the growth of some phytopathogenic fungi. Ruhuna J Sci. 2018Dec31;9(2):160168. https://doi.org/10.4038/rjs.v9i2.4410.4038/rjs.v9i2.44Search in Google Scholar

De Giani A, Bovio F, Forcella M, Fusi P, Sello G, Di Gennaro P. Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express. 2019 Dec;9(1):88. https://doi.org/10.1186/s13568-019-0813-6De GianiABovioFForcellaMFusiPSelloGDi GennaroP. Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express. 2019Dec;9(1):88. https://doi.org/10.1186/s13568-019-0813-610.1186/s13568-019-0813-6657979631209580Search in Google Scholar

de la Fuente-Salcido N, Guadalupe Alanís-Guzmán M, Bideshi DK, Salcedo-Hernández R, Bautista-Justo M, Barboza-Corona JE. Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol. 2008 Dec;190(6):633–640. https://doi.org/10.1007/s00203-008-0414-2de la Fuente-SalcidoNGuadalupe Alanís-GuzmánMBideshiDKSalcedo-HernándezRBautista-JustoMBarboza-CoronaJE. Enhanced synthesis and antimicrobial activities of bacteriocins produced by Mexican strains of Bacillus thuringiensis. Arch Microbiol. 2008Dec;190(6):633640. https://doi.org/10.1007/s00203-008-0414-210.1007/s00203-008-0414-218654760Search in Google Scholar

Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol. 2012 Jan 01;78(1):1–6. https://doi.org/10.1128/AEM.05576-11DobsonACotterPDRossRPHillC. Bacteriocin production: a probiotic trait?Appl Environ Microbiol. 2012Jan01;78(1):16. https://doi.org/10.1128/AEM.05576-1110.1128/AEM.05576-11325562522038602Search in Google Scholar

Drissi F, Buffet S, Raoult D, Merhej V. Common occurrence of antibacterial agents in human intestinal microbiota. Front Microbiol. 2015 May 07;6:441. https://doi.org/10.3389/fmicb.2015.00441DrissiFBuffetSRaoultDMerhejV. Common occurrence of antibacterial agents in human intestinal microbiota. Front Microbiol. 2015May07;6:441. https://doi.org/10.3389/fmicb.2015.0044110.3389/fmicb.2015.00441442343825999943Search in Google Scholar

Feliatra F, Muchlisin ZA, Teruna HY, Utamy WR, Nursyirwani N, Dahliaty A. Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to Vibrio, Pseudomonas, and Aeromonas species on fish. F1000 Res. 2018;7:415. https://doi.org/10.12688/f1000research.13958.1FeliatraFMuchlisinZATerunaHYUtamyWRNursyirwaniNDahliatyA. Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to VibrioPseudomonas, and Aeromonas species on fish. F1000 Res. 2018;7:415. https://doi.org/10.12688/f1000research.13958.110.12688/f1000research.13958.1618267430363877Search in Google Scholar

Gabrielsen C, Brede DA, Nes IF, Diep DB. Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol. 2014 Nov 15;80(22):6854–6862. https://doi.org/10.1128/AEM.02284-14GabrielsenCBredeDANesIFDiepDB. Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol. 2014Nov15;80(22):68546862. https://doi.org/10.1128/AEM.02284-1410.1128/AEM.02284-14424901925172850Search in Google Scholar

Gálvez A, Abriouel H, López RL, Omar NB. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol. 2007 Nov; 120(1–2):51–70. https://doi.org/10.1016/j.ijfoodmicro.2007.06.001GálvezAAbriouelHLópezRLOmarNB. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol. 2007Nov; 120(1–2):5170. https://doi.org/10.1016/j.ijfoodmicro.2007.06.00110.1016/j.ijfoodmicro.2007.06.00117614151Search in Google Scholar

Gebhart D, Lok S, Clare S, Tomas M, Stares M, Scholl D, Donskey CJ, Lawley TD, Govoni GR. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio. 2015 May 01;6(2):e02368-14. https://doi.org/10.1128/mBio.02368-14GebhartDLokSClareSTomasMStaresMSchollDDonskeyCJLawleyTDGovoniGR. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity. MBio. 2015May01;6(2):e02368-14. https://doi.org/10.1128/mBio.02368-1410.1128/mBio.02368-14445357925805733Search in Google Scholar

Ghequire MGK, De Mot R. The tailocin tale: peeling off phage tails. Trends Microbiol. 2015 Oct;23(10):587–590. https://doi.org/10.1016/j.tim.2015.07.011GhequireMGKDe MotR. The tailocin tale: peeling off phage tails. Trends Microbiol. 2015Oct;23(10):587590. https://doi.org/10.1016/j.tim.2015.07.01110.1016/j.tim.2015.07.01126433692Search in Google Scholar

Ghequire MGK, De Mot R. Turning over a new leaf: bacteriocins going green. Trends Microbiol. 2018 Jan;26(1):1–2. https://doi.org/10.1016/j.tim.2017.11.001GhequireMGKDe MotR. Turning over a new leaf: bacteriocins going green. Trends Microbiol. 2018Jan;26(1):12. https://doi.org/10.1016/j.tim.2017.11.00110.1016/j.tim.2017.11.00129150081Search in Google Scholar

Ghequire MGK, Öztürk B, De Mot R. Lectin-like bacteriocins. Front Microbiol. 2018a Nov 12;9:2706. https://doi.org/10.3389/fmicb.2018.02706GhequireMGKÖztürkBDe MotR. Lectin-like bacteriocins. Front Microbiol. 2018aNov12;9:2706. https://doi.org/10.3389/fmicb.2018.0270610.3389/fmicb.2018.02706624069130483232Search in Google Scholar

Ghequire MGK, Swings T, Michiels J, Buchanan SK, De Mot R. Hitting with a BAM: selective killing by lectin-like bacteriocins. MBio. 2018b Mar 20;9(2):e02138-17. https://doi.org/10.1128/mBio.02138-17GhequireMGKSwingsTMichielsJBuchananSKDe MotR. Hitting with a BAM: selective killing by lectin-like bacteriocins. MBio. 2018bMar20;9(2):e02138-17. https://doi.org/10.1128/mBio.02138-1710.1128/mBio.02138-17587491229559575Search in Google Scholar

Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol. 2008 Dec;81(4):591–606. https://doi.org/10.1007/s00253-008-1726-5GillorOEtzionARileyMA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol. 2008Dec;81(4):591606. https://doi.org/10.1007/s00253-008-1726-510.1007/s00253-008-1726-5267006918853155Search in Google Scholar

Gilmore MS, Rauch M, Ramsey MM, Himes PR, Varahan S, Manson JM, Lebreton F, Hancock LE. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains. Proc Natl Acad Sci USA. 2015 Jun 09;112(23):7273–7278. https://doi.org/10.1073/pnas.1500553112GilmoreMSRauchMRamseyMMHimesPRVarahanSMansonJMLebretonFHancockLE. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains. Proc Natl Acad Sci USA. 2015Jun09;112(23):72737278. https://doi.org/10.1073/pnas.150055311210.1073/pnas.1500553112446670026039987Search in Google Scholar

Grinter R, Milner J, Walker D. Bacteriocins active against plant pathogenic bacteria. Biochem Soc Trans. 2012 Dec 01;40(6):1498–1502. https://doi.org/10.1042/BST20120206GrinterRMilnerJWalkerD. Bacteriocins active against plant pathogenic bacteria. Biochem Soc Trans. 2012Dec01;40(6):14981502. https://doi.org/10.1042/BST2012020610.1042/BST2012020623176505Search in Google Scholar

Guralp SA, Murgha YE, Rouillard JM, Gulari E. From design to screening: a new antimicrobial peptide discovery pipeline. PLoS One. 2013 Mar 19;8(3):e59305. https://doi.org/10.1371/journal.pone.0059305GuralpSAMurghaYERouillardJMGulariE. From design to screening: a new antimicrobial peptide discovery pipeline. PLoS One. 2013Mar19;8(3):e59305. https://doi.org/10.1371/journal.pone.005930510.1371/journal.pone.0059305360218723527157Search in Google Scholar

Hahn-Löbmann S, Stephan A, Schulz S, Schneider T, Shaverskyi A, Tusé D, Giritch A, Gleba Y. Colicins and salmocins – New classes of plant-made non-antibiotic food antibacterials. Front Plant Sci. 2019 Apr 9;10:437. https://doi.org/10.3389/fpls.2019.00437Hahn-LöbmannSStephanASchulzSSchneiderTShaverskyiATuséDGiritchAGlebaY. Colicins and salmocins – New classes of plant-made non-antibiotic food antibacterials. Front Plant Sci. 2019Apr9;10:437. https://doi.org/10.3389/fpls.2019.0043710.3389/fpls.2019.00437646559231024601Search in Google Scholar

Hegemann JD, Zimmermann M, Xie X, Marahiel MA. Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res. 2015 Jul 21;48(7):1909–1919. https://doi.org/10.1021/acs.accounts.5b00156HegemannJDZimmermannMXieXMarahielMA. Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res. 2015Jul21;48(7):19091919. https://doi.org/10.1021/acs.accounts.5b0015610.1021/acs.accounts.5b0015626079760Search in Google Scholar

Helal MMI, Hashem AM, Ghobashy MOI, Shalaby SG. Some physiological and biological studies on reuterin production from Lactobacillus reuteri. J Prob Health. 2016;04(03):1–8. https://doi.org/10.4172/2329-8901.1000156HelalMMIHashemAMGhobashyMOIShalabySG. Some physiological and biological studies on reuterin production from Lactobacillus reuteri. J Prob Health. 2016;04(03):18. https://doi.org/10.4172/2329-8901.100015610.4172/2329-8901.1000156Search in Google Scholar

Helbig S, Braun V. Mapping functional domains of colicin M. J Bacteriol. 2011 Feb 15;193(4):815–821. https://doi.org/10.1128/JB.01206-10HelbigSBraunV. Mapping functional domains of colicin M. J Bacteriol. 2011Feb15;193(4):815821. https://doi.org/10.1128/JB.01206-1010.1128/JB.01206-10302866921148729Search in Google Scholar

Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010 Jan;8(1):15–25. https://doi.org/10.1038/nrmicro2259HibbingMEFuquaCParsekMRPetersonSB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010Jan;8(1):1525. https://doi.org/10.1038/nrmicro225910.1038/nrmicro2259287926219946288Search in Google Scholar

Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol. 2019 Aug;27(8):690–702. https://doi.org/10.1016/j.tim.2019.03.007HolsPLedesma-GarcíaLGabantPMignoletJ. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol. 2019Aug;27(8):690702. https://doi.org/10.1016/j.tim.2019.03.00710.1016/j.tim.2019.03.00730987817Search in Google Scholar

Huang T, Zhang X, Pan J, Su X, Jin X, Guan X. Purification and characterization of a novel cold shock protein-like bacteriocin synthesized by Bacillus thuringiensis. Sci Rep. 2016 Dec 16;6(1):35560. https://doi.org/10.1038/srep35560HuangTZhangXPanJSuXJinXGuanX. Purification and characterization of a novel cold shock protein-like bacteriocin synthesized by Bacillus thuringiensis. Sci Rep. 2016Dec16;6(1):35560. https://doi.org/10.1038/srep3556010.1038/srep35560507188327762322Search in Google Scholar

Huo L, Ökesli A, Zhao M, van der Donk WA. Insights into the biosynthesis of duramycin. Appl Environ Microbiol. 2017 Feb 01; 83(3):e02698-16. https://doi.org/10.1128/AEM.02698-16HuoLÖkesliAZhaoMvan der DonkWA. Insights into the biosynthesis of duramycin. Appl Environ Microbiol. 2017Feb01; 83(3):e02698-16. https://doi.org/10.1128/AEM.02698-1610.1128/AEM.02698-16524429127864176Search in Google Scholar

Hurst MRH, Beattie A, Jones SA, Laugraud A, van Koten C, Harper L. Serratia proteamaculans strain AGR96X encodes an antifeeding prophage (tailocin) with activity against grass grub (Costelytra giveni) and manuka beetle (Pyronota species) larvae. Appl Environ Microbiol. 2018 Mar 16;84(10):e02739-17. https://doi.org/10.1128/AEM.02739-17HurstMRHBeattieAJonesSALaugraudAvan KotenCHarperL. Serratia proteamaculans strain AGR96X encodes an antifeeding prophage (tailocin) with activity against grass grub (Costelytra giveni) and manuka beetle (Pyronota species) larvae. Appl Environ Microbiol. 2018Mar16;84(10):e02739-17. https://doi.org/10.1128/AEM.02739-1710.1128/AEM.02739-17593037729549100Search in Google Scholar

Iseppi R, Pilati F, Marini M, Toselli M, de Niederhäusern S, Guerrieri E, Messi P, Sabia C, Manicardi G, Anacarso I, et al. Antilisterial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging. Int J Food Microbiol. 2008 Apr;123(3):281–287. https://doi.org/10.1016/j.ijfoodmicro.2007.12.015IseppiRPilatiFMariniMToselliMde NiederhäusernSGuerrieriEMessiPSabiaCManicardiGAnacarsoI, Antilisterial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging. Int J Food Microbiol. 2008Apr;123(3):281287. https://doi.org/10.1016/j.ijfoodmicro.2007.12.01510.1016/j.ijfoodmicro.2007.12.01518262299Search in Google Scholar

Ivanov D, Emonet C, Foata F, Affolter M, Delley M, Fisseha M, Blum-Sperisen S, Kochhar S, Arigoni F. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J Biol Chem. 2006 Jun;281(25):17246–17252. https://doi.org/10.1074/jbc.M601678200IvanovDEmonetCFoataFAffolterMDelleyMFissehaMBlum-SperisenSKochharSArigoniF. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J Biol Chem. 2006Jun;281(25):1724617252. https://doi.org/10.1074/jbc.M60167820010.1074/jbc.M60167820016627467Search in Google Scholar

Juturu V, Wu JC. Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv. 2018 Dec; 36(8): 2187–2200. https://doi.org/10.1016/j.biotechadv.2018.10.007JuturuVWuJC. Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv. 2018Dec; 36(8): 21872200. https://doi.org/10.1016/j.biotechadv.2018.10.00710.1016/j.biotechadv.2018.10.00730385277Search in Google Scholar

Kaur Maan P, Garcha S. Bacteriocins from Gram-negative Rhizobium spp. Adv Biores. Jan 2018;9(1):36–43. https://doi.org/10.15515/abr.0976-4585.9.1.3643Kaur MaanPGarchaS. Bacteriocins from Gram-negative Rhizobium spp. Adv Biores. Jan2018;9(1):3643. https://doi.org/10.15515/abr.0976-4585.9.1.3643Search in Google Scholar

Kaur S, Kaur S. Bacteriocins as potential anticancer agents. Front Pharmacol. 2015 Nov 10;6:272. https://doi.org/10.3389/fphar.2015.00272KaurSKaurS. Bacteriocins as potential anticancer agents. Front Pharmacol. 2015Nov10;6:272. https://doi.org/10.3389/fphar.2015.0027210.3389/fphar.2015.00272463959626617524Search in Google Scholar

Kerr B, Riley MA, Feldman MW, Bohannan BJM. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002 Jul;418(6894):171–174. https://doi.org/10.1038/nature00823KerrBRileyMAFeldmanMWBohannanBJM. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature. 2002Jul;418(6894):171174. https://doi.org/10.1038/nature0082310.1038/nature0082312110887Search in Google Scholar

Kierończyk B, Sassek M, Pruszyńska-Oszmałek E, Kołodziejski P, Rawski M, Świątkiewicz S, Józefiak D. The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats. Poult Sci. 2017 Nov;96(11):4026–4037. https://doi.org/10.3382/ps/pex234KierończykBSassekMPruszyńska-OszmałekEKołodziejskiPRawskiMŚwiątkiewiczSJózefiakD. The physiological response of broiler chickens to the dietary supplementation of the bacteriocin nisin and ionophore coccidiostats. Poult Sci. 2017Nov;96(11):40264037. https://doi.org/10.3382/ps/pex23410.3382/ps/pex234585079229050441Search in Google Scholar

Kim JG, Park BK, Kim SU, Choi D, Nahm BH, Moon JS, Reader JS, Farrand SK, Hwang I. Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. Proc Natl Acad Sci USA. 2006 Jun 06;103(23):8846–8851. https://doi.org/10.1073/pnas.0602965103KimJGParkBKKimSUChoiDNahmBHMoonJSReaderJSFarrandSKHwangI. Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan Horse antibiotic that controls crown gall. Proc Natl Acad Sci USA. 2006Jun06;103(23):88468851. https://doi.org/10.1073/pnas.060296510310.1073/pnas.0602965103148266616731618Search in Google Scholar

Kjos M, Nes IF, Diep DB. Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system. Appl Environ Microbiol. 2011 May 15;77(10):3335–3342. https://doi.org/10.1128/AEM.02602-10KjosMNesIFDiepDB. Mechanisms of resistance to bacteriocins targeting the mannose phosphotransferase system. Appl Environ Microbiol. 2011May15;77(10):33353342. https://doi.org/10.1128/AEM.02602-1010.1128/AEM.02602-10312646421421780Search in Google Scholar

Kohoutova D, Smajs D, Moravkova P, Cyrany J, Moravkova M, Forstlova M, Cihak M, Rejchrt S, Bures J. Escherichia colistrains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis. 2014 Dec;14(1):733. https://doi.org/10.1186/s12879-014-0733-7KohoutovaDSmajsDMoravkovaPCyranyJMoravkovaMForstlovaMCihakMRejchrtSBuresJ. Escherichia colistrains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis. 2014Dec;14(1):733. https://doi.org/10.1186/s12879-014-0733-710.1186/s12879-014-0733-7430005525540872Search in Google Scholar

Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh Å. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother. 2004 Sep 01;54(3):648–653. https://doi.org/10.1093/jac/dkh387KruszewskaDSahlHGBierbaumGPagUHynesSOLjunghÅ. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother. 2004Sep01;54(3):648653. https://doi.org/10.1093/jac/dkh38710.1093/jac/dkh38715282239Search in Google Scholar

Kumar B, Balgir PP, Kaur B, Mittu B, Chauhan A. In vitro cytotoxicity of native and rec-Pediocin CP2 against cancer cell lines: a comparative study. Pharm Anal Acta. 2012;03(08):1–4. https://doi.org/10.4172/2153-2435.1000183KumarBBalgirPPKaurBMittuBChauhanA. In vitro cytotoxicity of native and rec-Pediocin CP2 against cancer cell lines: a comparative study. Pharm Anal Acta. 2012;03(08):14. https://doi.org/10.4172/2153-2435.100018310.4172/2153-2435.1000183Search in Google Scholar

Kumar M, Dhaka P, Vijay D, Vergis J, Mohan V, Kumar A, Kurkure NV, Barbuddhe SB, Malik SVS, Rawool DB. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli. Int J Antimicrob Agents. 2016 Sep;48(3):265–270. https://doi.org/10.1016/j.ijantimicag.2016.05.014KumarMDhakaPVijayDVergisJMohanVKumarAKurkureNVBarbuddheSBMalikSVSRawoolDB. Antimicrobial effects of Lactobacillus plantarum and Lactobacillus acidophilus against multidrug-resistant enteroaggregative Escherichia coli. Int J Antimicrob Agents. 2016Sep;48(3):265270. https://doi.org/10.1016/j.ijantimicag.2016.05.01410.1016/j.ijantimicag.2016.05.01427451088Search in Google Scholar

Ladjouzi R, Lucau-Danila A, Benachour A, Drider D. A leaderless two-peptide bacteriocin, enterocin DD14, is involved in its own self-immunity: evidence and insights. Front Bioeng Biotechnol. 2020 Jun 26;8:644. https://doi.org/10.3389/fbioe.2020.00644LadjouziRLucau-DanilaABenachourADriderD. A leaderless two-peptide bacteriocin, enterocin DD14, is involved in its own self-immunity: evidence and insights. Front Bioeng Biotechnol. 2020Jun26;8:644. https://doi.org/10.3389/fbioe.2020.0064410.3389/fbioe.2020.00644733271332671042Search in Google Scholar

Latham RD, Gell DA, Fairbairn RL, Lyons AB, Shukla SD, Cho KY, Jones DA, Harkness NM, Tristram SG. An isolate of Haemophilus haemolyticus produces a bacteriocin-like substance that inhibits the growth of nontypeable Haemophilus influenzae. Int J Antimicrob Agents. 2017 Apr;49(4):503–506. https://doi.org/10.1016/j.ijantimicag.2016.12.010LathamRDGellDAFairbairnRLLyonsABShuklaSDChoKYJonesDAHarknessNMTristramSG. An isolate of Haemophilus haemolyticus produces a bacteriocin-like substance that inhibits the growth of nontypeable Haemophilus influenzae. Int J Antimicrob Agents. 2017Apr;49(4):503506. https://doi.org/10.1016/j.ijantimicag.2016.12.01010.1016/j.ijantimicag.2016.12.01028242259Search in Google Scholar

Lavermicocca P, Lonigro SL, Valerio F, Evidente A, Visconti A. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl Environ Microbiol. 2002 Mar;68(3): 1403–1407. https://doi.org/10.1128/AEM.68.3.1403-1407.2002LavermicoccaPLonigroSLValerioFEvidenteAViscontiA. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl Environ Microbiol. 2002Mar;68(3): 14031407. https://doi.org/10.1128/AEM.68.3.1403-1407.200210.1128/AEM.68.3.1403-1407.200212373411872493Search in Google Scholar

Lee NK, Paik HD. Partial characterization of lacticin NK24, a newly identified bacteriocin of Lactococcus lactis NK24 isolated from Jeot-gal. Food Microbiol. 2001 Feb;18(1):17–24. https://doi.org/10.1006/fmic.2000.0368LeeNKPaikHD. Partial characterization of lacticin NK24, a newly identified bacteriocin of Lactococcus lactis NK24 isolated from Jeot-gal. Food Microbiol. 2001Feb;18(1):1724. https://doi.org/10.1006/fmic.2000.036810.1006/fmic.2000.0368Search in Google Scholar

Li JZ, Zhou LY, Peng YL, Fan J. Pseudomonas bacteriocin syringacin M released upon desiccation suppresses the growth of sensitive bacteria in plant necrotic lesions. Microb Biotechnol. 2020 Jan;13(1):134–147. https://doi.org/10.1111/1751-7915.13367LiJZZhouLYPengYLFanJ. Pseudomonas bacteriocin syringacin M released upon desiccation suppresses the growth of sensitive bacteria in plant necrotic lesions. Microb Biotechnol. 2020Jan;13(1):134147. https://doi.org/10.1111/1751-7915.1336710.1111/1751-7915.13367692252230672132Search in Google Scholar

Liu G, Lv Y, Li P, Zhou K, Zhang J. Pentocin 31–1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31–1 isolated from Xuan-Wei Ham, a traditional China fermented meat product. Food Control. 2008 Apr;19(4):353–359. https://doi.org/10.1016/j.foodcont.2007.04.010LiuGLvYLiPZhouKZhangJ. Pentocin 31–1, an anti-Listeria bacteriocin produced by Lactobacillus pentosus 31–1 isolated from Xuan-Wei Ham, a traditional China fermented meat product. Food Control. 2008Apr;19(4):353359. https://doi.org/10.1016/j.foodcont.2007.04.01010.1016/j.foodcont.2007.04.010Search in Google Scholar

Liu X, Basu U, Miller P, McMullen LM. Stress response and adaptation of Listeria monocytogenes 08-5923 exposed to a sublethal dose of carnocyclin A. Appl Environ Microbiol. 2014 Jul 01;80(13):3835–3841. https://doi.org/10.1128/AEM.00350-14LiuXBasuUMillerPMcMullenLM. Stress response and adaptation of Listeria monocytogenes 08-5923 exposed to a sublethal dose of carnocyclin A. Appl Environ Microbiol. 2014Jul01;80(13):38353841. https://doi.org/10.1128/AEM.00350-1410.1128/AEM.00350-14405421324747893Search in Google Scholar

López-Cuellar MR, Rodríguez-Hernández AI, Chavarría-Hernández N. LAB bacteriocin applications in the last decade. Biotechnol Biotechnol Equip. 2016 Nov 01;30(6):1039–1050. https://doi.org/10.1080/13102818.2016.1232605López-CuellarMRRodríguez-HernándezAIChavarría-HernándezN. LAB bacteriocin applications in the last decade. Biotechnol Biotechnol Equip. 2016Nov01;30(6):10391050. https://doi.org/10.1080/13102818.2016.123260510.1080/13102818.2016.1232605Search in Google Scholar

Maldonado-Barragán A, Caballero-Guerrero B, Martín V, Ruiz-Barba JL, Rodríguez JM. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol. 2016 Dec;16(1):37. https://doi.org/10.1186/s12866-016-0663-1Maldonado-BarragánACaballero-GuerreroBMartínVRuiz-BarbaJLRodríguezJM. Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol. 2016Dec;16(1):37. https://doi.org/10.1186/s12866-016-0663-110.1186/s12866-016-0663-1478891426969428Search in Google Scholar

Marín-Cevada V, Muñoz-Rojas J, Caballero-Mellado J, Mascarúa-Esparza MA, Castañeda-Lucio M, Carreño-López R, Estrada-de los Santos P, Fuentes-Ramírez LE. Antagonistic interactions among bacteria inhabiting pineapple. Appl Soil Ecol. 2012 Oct;61:230–235. https://doi.org/10.1016/j.apsoil.2011.11.014Marín-CevadaVMuñoz-RojasJCaballero-MelladoJMascarúa-EsparzaMACastañeda-LucioMCarreño-LópezREstrada-de los SantosPFuentes-RamírezLE. Antagonistic interactions among bacteria inhabiting pineapple. Appl Soil Ecol. 2012Oct;61:230235. https://doi.org/10.1016/j.apsoil.2011.11.01410.1016/j.apsoil.2011.11.014Search in Google Scholar

McCaughey LC, Grinter R, Josts I, Roszak AW, Waløen KI, Cogdell RJ, Milner J, Evans T, Kelly S, Tucker NP, et al. Lectin-like bacteriocins from Pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor. PLoS Pathog. 2014 Feb 6; 10(2):e1003898. https://doi.org/10.1371/journal.ppat.1003898McCaugheyLCGrinterRJostsIRoszakAWWaløenKICogdellRJMilnerJEvansTKellySTuckerNP, Lectin-like bacteriocins from Pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor. PLoS Pathog. 2014Feb6; 10(2):e1003898. https://doi.org/10.1371/journal.ppat.100389810.1371/journal.ppat.1003898391639124516380Search in Google Scholar

McCaughey LC, Ritchie ND, Douce GR, Evans TJ, Walker D. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Sci Rep. 2016 Sep; 6(1):30201. https://doi.org/10.1038/srep30201McCaugheyLCRitchieNDDouceGREvansTJWalkerD. Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Sci Rep. 2016Sep; 6(1):30201. https://doi.org/10.1038/srep3020110.1038/srep30201495710927444885Search in Google Scholar

Michel-Briand Y, Baysse C. The pyocins of Pseudomonas aeruginosa. Biochimie. 2002 May;84(5–6):499–510. https://doi.org/10.1016/S0300-9084(02)01422-0Michel-BriandYBaysseC. The pyocins of Pseudomonas aeruginosa. Biochimie. 2002May;84(5–6):499510. https://doi.org/10.1016/S0300-9084(02)01422-010.1016/S0300-9084(02)01422-0Search in Google Scholar

Miclotte L, Van de Wiele T. Food processing, gut microbiota and the globesity problem. Crit Rev Food Sci Nutr. 2020 Jun 16;60(11): 1769–1782. https://doi.org/10.1080/10408398.2019.1596878MiclotteLVan de WieleT. Food processing, gut microbiota and the globesity problem. Crit Rev Food Sci Nutr. 2020Jun16;60(11): 17691782. https://doi.org/10.1080/10408398.2019.159687810.1080/10408398.2019.159687830945554Search in Google Scholar

Mignolet J, Fontaine L, Sass A, Nannan C, Mahillon J, Coenye T, Hols P. Circuitry rewiring directly couples competence to predation in the gut dweller Streptococcus salivarius. Cell Rep. 2018 Feb; 22(7):1627–1638. https://doi.org/10.1016/j.celrep.2018.01.055MignoletJFontaineLSassANannanCMahillonJCoenyeTHolsP. Circuitry rewiring directly couples competence to predation in the gut dweller Streptococcus salivarius. Cell Rep. 2018Feb; 22(7):16271638. https://doi.org/10.1016/j.celrep.2018.01.05510.1016/j.celrep.2018.01.05529444418Search in Google Scholar

Miller P, McMullen LM. Mechanism for temperature-dependent production of piscicolin 126. Microbiology. 2014 Aug 01;160(8): 1670–1678. https://doi.org/10.1099/mic.0.078030-0MillerPMcMullenLM. Mechanism for temperature-dependent production of piscicolin 126. Microbiology. 2014Aug01;160(8): 16701678. https://doi.org/10.1099/mic.0.078030-010.1099/mic.0.078030-024858287Search in Google Scholar

Mills S, Griffin C, O’Connor PM, Serrano LM, Meijer WC, Hill C, Ross RP. A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Appl Environ Microbiol. 2017 Jul 15;83(14):e00799-17. https://doi.org/10.1128/AEM.00799-17MillsSGriffinCO’ConnorPMSerranoLMMeijerWCHillCRossRP. A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Appl Environ Microbiol. 2017Jul15;83(14):e00799-17. https://doi.org/10.1128/AEM.00799-1710.1128/AEM.00799-17549462328476774Search in Google Scholar

Mitkowski P, Jagielska E, Nowak E, Bujnicki JM, Stefaniak F, Niedziałek D, Bochtler M, Sabała I. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep. 2019 Dec; 9(1):5965. https://doi.org/10.1038/s41598-019-42435-zMitkowskiPJagielskaENowakEBujnickiJMStefaniakFNiedziałekDBochtlerMSabałaI. Structural bases of peptidoglycan recognition by lysostaphin SH3b domain. Sci Rep. 2019Dec; 9(1):5965. https://doi.org/10.1038/s41598-019-42435-z10.1038/s41598-019-42435-z646165530979923Search in Google Scholar

Molloy EM, Casjens SR, Cox CL, Maxson T, Ethridge NA, Margos G, Fingerle V, Mitchell DA. Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family. BMC Microbiol. 2015 Dec;15(1):141. https://doi.org/10.1186/s12866-015-0464-yMolloyEMCasjensSRCoxCLMaxsonTEthridgeNAMargosGFingerleVMitchellDA. Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family. BMC Microbiol. 2015Dec;15(1):141. https://doi.org/10.1186/s12866-015-0464-y10.1186/s12866-015-0464-y451379026204951Search in Google Scholar

Monteiro CA, Levy RB, Claro RM, de Castro IRR, Cannon G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2010 Dec 20;14(1):5–13. https://doi.org/10.1017/S1368980010003241MonteiroCALevyRBClaroRMde CastroIRRCannonG. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2010Dec20;14(1):513. https://doi.org/10.1017/S136898001000324110.1017/S136898001000324121211100Search in Google Scholar

Moubarac JC, Martins APB, Claro RM, Levy RB, Cannon G, Monteiro CA. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr. 2013 Dec;16(12):2240–2248. https://doi.org/10.1017/S1368980012005009MoubaracJCMartinsAPBClaroRMLevyRBCannonGMonteiroCA. Consumption of ultra-processed foods and likely impact on human health. Evidence from Canada. Public Health Nutr. 2013Dec;16(12):22402248. https://doi.org/10.1017/S136898001200500910.1017/S136898001200500923171687Search in Google Scholar

Naz SA, Jabeen N, Sohail M, Rasool SA. Biophysicochemical characterization of Pyocin SA189 produced by Pseudomonas aeruginosa SA189. Braz J Microbiol. 2015 Dec;46(4):1147–1154. https://doi.org/10.1590/S1517-838246420140737NazSAJabeenNSohailMRasoolSA. Biophysicochemical characterization of Pyocin SA189 produced by Pseudomonas aeruginosa SA189. Braz J Microbiol. 2015Dec;46(4):11471154. https://doi.org/10.1590/S1517-83824642014073710.1590/S1517-838246420140737470461526691474Search in Google Scholar

Nazari M, Smith DL. A PGPR-produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Front Plant Sci. 2020 Jul 7;11:916. https://doi.org/10.3389/fpls.2020.00916NazariMSmithDL. A PGPR-produced bacteriocin for sustainable agriculture: a review of thuricin 17 characteristics and applications. Front Plant Sci. 2020Jul7;11:916. https://doi.org/10.3389/fpls.2020.0091610.3389/fpls.2020.00916735858632733506Search in Google Scholar

Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009 Jan;136(1):65–80. https://doi.org/10.1053/j.gastro.2008.10.080NeishAS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009Jan;136(1):6580. https://doi.org/10.1053/j.gastro.2008.10.08010.1053/j.gastro.2008.10.080289278719026645Search in Google Scholar

Nguyen C, Nguyen VD. Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. Biomed Res Int. 2016;2016:1–12. https://doi.org/10.1155/2016/8490482NguyenCNguyenVD. Discovery of azurin-like anticancer bacteriocins from human gut microbiome through homology modeling and molecular docking against the tumor suppressor p53. Biomed Res Int. 2016;2016:112. https://doi.org/10.1155/2016/849048210.1155/2016/8490482486707027239476Search in Google Scholar

Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. Lateral opening and exit pore formation are required for BamA function. Structure. 2014 Jul;22(7):1055–1062. https://doi.org/10.1016/j.str.2014.05.008NoinajNKuszakAJBalusekCGumbartJCBuchananSK. Lateral opening and exit pore formation are required for BamA function. Structure. 2014Jul;22(7):10551062. https://doi.org/10.1016/j.str.2014.05.00810.1016/j.str.2014.05.008410058524980798Search in Google Scholar

Oliveira MM, Ramos ETA, Drechsel MM, Vidal MS, Schwab S, Baldani JI. Gluconacin from Gluconacetobacter diazotrophicus PAL5 is an active bacteriocin against phytopathogenic and beneficial sugarcane bacteria. J Appl Microbiol. 2018 Dec;125(6):1812–1826. https://doi.org/10.1111/jam.14074OliveiraMMRamosETADrechselMMVidalMSSchwabSBaldaniJI. Gluconacin from Gluconacetobacter diazotrophicus PAL5 is an active bacteriocin against phytopathogenic and beneficial sugarcane bacteria. J Appl Microbiol. 2018Dec;125(6):18121826. https://doi.org/10.1111/jam.1407410.1111/jam.1407430136440Search in Google Scholar

Oluyombo O, Penfold CN, Diggle SP. Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-pyocins. MBio. 2019 Jan 29;10(1):e01828-18. https://doi.org/10.1128/mBio.01828-18OluyomboOPenfoldCNDiggleSP. Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-pyocins. MBio. 2019Jan29;10(1):e01828-18. https://doi.org/10.1128/mBio.01828-1810.1128/mBio.01828-18635598530696740Search in Google Scholar

Ongey EL, Yassi H, Pflugmacher S, Neubauer P. Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol Lett. 2017 Apr;39(4):473–482. https://doi.org/10.1007/s10529-016-2279-9OngeyELYassiHPflugmacherSNeubauerP. Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol Lett. 2017Apr;39(4):473482. https://doi.org/10.1007/s10529-016-2279-910.1007/s10529-016-2279-928044226Search in Google Scholar

Paiva AD, Breukink E, Mantovani HC. Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob Agents Chemother. 2011 Nov;55(11):5284–5293. https://doi.org/10.1128/AAC.00638-11PaivaADBreukinkEMantovaniHC. Role of lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob Agents Chemother. 2011Nov;55(11):52845293. https://doi.org/10.1128/AAC.00638-1110.1128/AAC.00638-11319504621876041Search in Google Scholar

Palamidi I, Fegeros K, Mohnl M, Abdelrahman WHA, Schatzmayr G, Theodoropoulos G, Mountzouris KC. Probiotic form effects on growth performance, digestive function, and immune related biomarkers in broilers. Poult Sci. 2016 Jul;95(7):1598–1608. https://doi.org/10.3382/ps/pew052PalamidiIFegerosKMohnlMAbdelrahmanWHASchatzmayrGTheodoropoulosGMountzourisKC. Probiotic form effects on growth performance, digestive function, and immune related biomarkers in broilers. Poult Sci. 2016Jul;95(7):15981608. https://doi.org/10.3382/ps/pew05210.3382/ps/pew05226944970Search in Google Scholar

Parnasa R, Sendersky E, Simkovsky R, Waldman Ben-Asher H, Golden SS, Schwarz R. A microcin processing peptidase‐like protein of the cyanobacterium Synechococcus elongatus is essential for secretion of biofilm‐promoting proteins. Environ Microbiol Rep. 2019 Jun;11(3):456–463. https://doi.org/10.1111/1758-2229.12751ParnasaRSenderskyESimkovskyRWaldman Ben-AsherHGoldenSSSchwarzR. A microcin processing peptidase‐like protein of the cyanobacterium Synechococcus elongatus is essential for secretion of biofilm‐promoting proteins. Environ Microbiol Rep. 2019Jun;11(3):456463. https://doi.org/10.1111/1758-2229.1275110.1111/1758-2229.1275130868754Search in Google Scholar

Parret AHA, Temmerman K, De Mot R. Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. 2005 Sep;71(9):5197–5207. https://doi.org/10.1128/AEM.71.9.5197-5207.2005ParretAHATemmermanKDe MotR. Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol. 2005Sep;71(9):51975207. https://doi.org/10.1128/AEM.71.9.5197-5207.200510.1128/AEM.71.9.5197-5207.2005121468316151105Search in Google Scholar

Patz S, Becker Y, Richert-Pöggeler KR, Berger B, Ruppel S, Huson DH, Becker M. Phage tail-like particles are versatile bacterial nanomachines – a mini-review. J Adv Res. 2019 Sep;19:75–84. https://doi.org/10.1016/j.jare.2019.04.003PatzSBeckerYRichert-PöggelerKRBergerBRuppelSHusonDHBeckerM. Phage tail-like particles are versatile bacterial nanomachines – a mini-review. J Adv Res. 2019Sep;19:7584. https://doi.org/10.1016/j.jare.2019.04.00310.1016/j.jare.2019.04.003662997831341672Search in Google Scholar

Perez RH, Zendo T, Sonomoto K. Circular and leaderless bacteriocins: Biosynthesis, mode of action, applications, and prospects. Front Microbiol. 2018 Sep 4;9:2085. https://doi.org/10.3389/fmicb.2018.02085PerezRHZendoTSonomotoK. Circular and leaderless bacteriocins: Biosynthesis, mode of action, applications, and prospects. Front Microbiol. 2018Sep4;9:2085. https://doi.org/10.3389/fmicb.2018.0208510.3389/fmicb.2018.02085613152530233551Search in Google Scholar

Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact. 2014;13(Suppl 1):S3. https://doi.org/10.1186/1475-2859-13-S1-S3PerezRHZendoTSonomotoK. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact. 2014;13(Suppl 1):S3. https://doi.org/10.1186/1475-2859-13-S1-S310.1186/1475-2859-13-S1-S3415582025186038Search in Google Scholar

Pimentel-Filho NJ, Mantovani HC, de Carvalho AF, Dias RS, Vanetti MCD. Efficacy of bovicin HC5 and nisin combination against Listeria monocytogenes and Staphylococcus aureus in fresh cheese. Int J Food Sci Technol. 2014 Feb;49(2):416–422. https://doi.org/10.1111/ijfs.12316Pimentel-FilhoNJMantovaniHCde CarvalhoAFDiasRSVanettiMCD. Efficacy of bovicin HC5 and nisin combination against Listeria monocytogenes and Staphylococcus aureus in fresh cheese. Int J Food Sci Technol. 2014Feb;49(2):416422. https://doi.org/10.1111/ijfs.1231610.1111/ijfs.12316Search in Google Scholar

Pogány Simonová M, Chrastinová Ľ, Lauková A. Autochtonous strain Enterococcus faecium EF2019(CCM7420), its bacteriocin and their beneficial effects in broiler rabbits – a review. Animals (Basel). 2020 Jul 14;10(7):1188. https://doi.org/10.3390/ani10071188Pogány SimonováMChrastinováĽLaukováA. Autochtonous strain Enterococcus faecium EF2019(CCM7420), its bacteriocin and their beneficial effects in broiler rabbits – a review. Animals (Basel). 2020Jul14;10(7):1188. https://doi.org/10.3390/ani1007118810.3390/ani10071188740155332674281Search in Google Scholar

Price R, Jayeola V, Niedermeyer J, Parsons C, Kathariou S. The Listeria monocytogenes key virulence determinants hly and prfA are involved in biofilm formation and aggregation but not colonization of fresh produce. Pathogens. 2018 Feb 01;7(1):18. https://doi.org/10.3390/pathogens7010018PriceRJayeolaVNiedermeyerJParsonsCKathariouS. The Listeria monocytogenes key virulence determinants hly and prfA are involved in biofilm formation and aggregation but not colonization of fresh produce. Pathogens. 2018Feb01;7(1):18. https://doi.org/10.3390/pathogens701001810.3390/pathogens7010018587474429389865Search in Google Scholar

Príncipe A, Fernandez M, Torasso M, Godino A, Fischer S. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiol Res. 2018 Jul;212-213:94–102. https://doi.org/10.1016/j.micres.2018.05.010PríncipeAFernandezMTorassoMGodinoAFischerS. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Microbiol Res. 2018Jul;212-213:94102. https://doi.org/10.1016/j.micres.2018.05.01010.1016/j.micres.2018.05.01029853172Search in Google Scholar

Rebuffat S. Microcins and other bacteriocins: Bridging the gaps between killing strategies, ecology and applications. In: Dorit RL, Roy SM, Riley MA, editors. The Bacteriocins: Current knowledge and future prospects. Norfolk (UK): Caister Academic Press; 2016. p. 11–34. https://doi.org/10.21775/9781910190371.02RebuffatS. Microcins and other bacteriocins: Bridging the gaps between killing strategies, ecology and applications. In: DoritRLRoySMRileyMA, editors. The Bacteriocins: Current knowledge and future prospects. Norfolk (UK): Caister Academic Press; 2016. p. 1134. https://doi.org/10.21775/9781910190371.0210.21775/9781910190371.02Search in Google Scholar

Redero M, López-Causapé C, Aznar J, Oliver A, Blázquez J, Prieto AI. Susceptibility to R-pyocins of Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. J Antimicrob Chemother. 2018 Oct 01;73(10):2770–2776. https://doi.org/10.1093/jac/dky261RederoMLópez-CausapéCAznarJOliverABlázquezJPrietoAI. Susceptibility to R-pyocins of Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. J Antimicrob Chemother. 2018Oct01;73(10):27702776. https://doi.org/10.1093/jac/dky26110.1093/jac/dky26130052973Search in Google Scholar

Riboulet-Bisson E, Sturme MHJ, Jeffery IB, O’Donnell MM, Neville BA, Forde BM, Claesson MJ, Harris H, Gardiner GE, Casey PG, et al. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One. 2012 Feb 17;7(2):e31113. https://doi.org/10.1371/journal.pone.0031113Riboulet-BissonESturmeMHJJefferyIBO’DonnellMMNevilleBAFordeBMClaessonMJHarrisHGardinerGECaseyPG, Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One. 2012Feb17;7(2):e31113. https://doi.org/10.1371/journal.pone.003111310.1371/journal.pone.0031113328192322363561Search in Google Scholar

Rihakova J, Cappelier JM, Hue I, Demnerova K, Fédérighi M, Prévost H, Drider D. In vivo activities of recombinant divercin V41 and its structural variants against Listeria monocytogenes. Antimicrob Agents Chemother. 2010 Jan;54(1):563–564. https://doi.org/10.1128/AAC.00765-09RihakovaJCappelierJMHueIDemnerovaKFédérighiMPrévostHDriderD. In vivo activities of recombinant divercin V41 and its structural variants against Listeria monocytogenes. Antimicrob Agents Chemother. 2010Jan;54(1):563564. https://doi.org/10.1128/AAC.00765-0910.1128/AAC.00765-09279848919841145Search in Google Scholar

Riley MA. Bacteriocins, biology, ecology, and evolution. In: Schaechter M, editor. Encyclopedia of Microbiology. Cambridge (USA): Academic Press; 2009. p. 32–44. https://doi.org/10.1016/B978-012373944-5.00065-1RileyMA. Bacteriocins, biology, ecology, and evolution. In: SchaechterM, editor. Encyclopedia of Microbiology. Cambridge (USA): Academic Press; 2009. p. 3244. https://doi.org/10.1016/B978-012373944-5.00065-110.1016/B978-012373944-5.00065-1Search in Google Scholar

Rodrigues G, Silva GGO, Buccini DF, Duque HM, Dias SC, Franco OL. Bacterial proteinaceous compounds with multiple activities toward cancers and microbial infection. Front Microbiol. 2019 Aug 6;10:1690. https://doi.org/10.3389/fmicb.2019.01690RodriguesGSilvaGGOBucciniDFDuqueHMDiasSCFrancoOL. Bacterial proteinaceous compounds with multiple activities toward cancers and microbial infection. Front Microbiol. 2019Aug6;10:1690. https://doi.org/10.3389/fmicb.2019.0169010.3389/fmicb.2019.01690669104831447795Search in Google Scholar

Roh E, Park TH, Kim M, Lee S, Ryu S, Oh CS, Rhee S, Kim DH, Park BS, Heu S. Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Appl Environ Microbiol. 2010 Nov 15;76(22):7541–7549. https://doi.org/10.1128/AEM.03103-09RohEParkTHKimMLeeSRyuSOhCSRheeSKimDHParkBSHeuS. Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Appl Environ Microbiol. 2010Nov15;76(22):75417549. https://doi.org/10.1128/AEM.03103-0910.1128/AEM.03103-09297618320870796Search in Google Scholar

Rooney WM, Grinter RW, Correia A, Parkhill J, Walker DC, Milner JJ. Engineering bacteriocin‐mediated resistance against the plant pathogen Pseudomonas syringae. Plant Biotechnol J. 2020 May; 18(5):1296–1306. https://doi.org/10.1111/pbi.13294RooneyWMGrinterRWCorreiaAParkhillJWalkerDCMilnerJJ. Engineering bacteriocin‐mediated resistance against the plant pathogen Pseudomonas syringae. Plant Biotechnol J. 2020May; 18(5):12961306. https://doi.org/10.1111/pbi.1329410.1111/pbi.13294715260931705720Search in Google Scholar

Russel J, Røder HL, Madsen JS, Burmølle M, Sørensen SJ. Antagonism correlates with metabolic similarity in diverse bacteria. Proc Natl Acad Sci USA. 2017 Oct 03;114(40):10684–10688. https://doi.org/10.1073/pnas.1706016114RusselJRøderHLMadsenJSBurmølleMSørensenSJ. Antagonism correlates with metabolic similarity in diverse bacteria. Proc Natl Acad Sci USA. 2017Oct03;114(40):1068410688. https://doi.org/10.1073/pnas.170601611410.1073/pnas.1706016114563587928923945Search in Google Scholar

Salazar-Marroquín EL, Galán-Wong LJ, Moreno-Medina VR, Reyes-López MÁ, Pereyra-Alférez B. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications. Rev Med Microbiol. 2016 Jul;27(3):95–101. https://doi.org/10.1097/MRM.0000000000000076Salazar-MarroquínELGalán-WongLJMoreno-MedinaVRReyes-LópezPereyra-AlférezB. Bacteriocins synthesized by Bacillus thuringiensis: generalities and potential applications. Rev Med Microbiol. 2016Jul;27(3):95101. https://doi.org/10.1097/MRM.000000000000007610.1097/MRM.0000000000000076489476127340340Search in Google Scholar

Salgado PR, Ortiz CM, Musso YS, Di Giorgio L, Mauri AN. Edible films and coatings containing bioactives. Curr Opin Food Sci. 2015 Oct;5:86–92. https://doi.org/10.1016/j.cofs.2015.09.004SalgadoPROrtizCMMussoYSDi GiorgioLMauriAN. Edible films and coatings containing bioactives. Curr Opin Food Sci. 2015Oct;5:8692. https://doi.org/10.1016/j.cofs.2015.09.00410.1016/j.cofs.2015.09.004Search in Google Scholar

Salvucci E, Saavedra L, Hebert EM, Haro C, Sesma F. Enterocin CRL35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog Dis. 2012 Jan;9(1):68–74. https://doi.org/10.1089/fpd.2011.0972SalvucciESaavedraLHebertEMHaroCSesmaF. Enterocin CRL35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog Dis. 2012Jan;9(1):6874. https://doi.org/10.1089/fpd.2011.097210.1089/fpd.2011.097222011041Search in Google Scholar

Sánchez-Hidalgo M, Montalbán-López M, Cebrián R, Valdivia E, Martínez-Bueno M, Maqueda M. AS-48 bacteriocin: close to perfection. Cell Mol Life Sci. 2011 Sep;68(17):2845–2857. https://doi.org/10.1007/s00018-011-0724-4Sánchez-HidalgoMMontalbán-LópezMCebriánRValdiviaEMartínez-BuenoMMaquedaM. AS-48 bacteriocin: close to perfection. Cell Mol Life Sci. 2011Sep;68(17):28452857. https://doi.org/10.1007/s00018-011-0724-410.1007/s00018-011-0724-4Search in Google Scholar

Sand SL, Nissen-Meyer J, Sand O, Haug TM. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim Biophys Acta (BBA) – Biomembranes. 2013 Feb;1828(2):249–259. https://doi.org/10.1016/j.bbamem.2012.11.001SandSLNissen-MeyerJSandOHaugTM. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochim Biophys Acta (BBA) – Biomembranes. 2013Feb;1828(2):249259. https://doi.org/10.1016/j.bbamem.2012.11.00110.1016/j.bbamem.2012.11.001Search in Google Scholar

Sarantinopoulos P, Leroy F, Leontopoulou E, Georgalaki MD, Kalantzopoulos G, Tsakalidou E, Vuyst LD. Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. Int J Food Microbiol. 2002 Jan;72(1–2):125–136. https://doi.org/10.1016/S0168-1605(01)00633-XSarantinopoulosPLeroyFLeontopoulouEGeorgalakiMDKalantzopoulosGTsakalidouEVuystLD. Bacteriocin production by Enterococcus faecium FAIR-E 198 in view of its application as adjunct starter in Greek Feta cheese making. Int J Food Microbiol. 2002Jan;72(1–2):125136. https://doi.org/10.1016/S0168-1605(01)00633-X10.1016/S0168-1605(01)00633-XSearch in Google Scholar

Sarika AR, Lipton AP, Aishwarya MS. Biopreservative efficacy of bacteriocin gp1 of Lactobacillus rhamnosus gp1 on stored fish filets. Front Nutr. 2019 Mar 22;6:29. https://doi.org/10.3389/fnut.2019.00029SarikaARLiptonAPAishwaryaMS. Biopreservative efficacy of bacteriocin gp1 of Lactobacillus rhamnosus gp1 on stored fish filets. Front Nutr. 2019Mar22;6:29. https://doi.org/10.3389/fnut.2019.0002910.3389/fnut.2019.00029643933830968026Search in Google Scholar

Schneider T, Hahn-Löbmann S, Stephan A, Schulz S, Giritch A, Naumann M, Kleinschmidt M, Tusé D, Gleba Y. Plant-made Salmonella bacteriocins salmocins for control of Salmonella pathovars. Sci Rep. 2018 Dec;8(1):4078. https://doi.org/10.1038/s41598-018-22465-9SchneiderTHahn-LöbmannSStephanASchulzSGiritchANaumannMKleinschmidtMTuséDGlebaY. Plant-made Salmonella bacteriocins salmocins for control of Salmonella pathovars. Sci Rep. 2018Dec;8(1):4078. https://doi.org/10.1038/s41598-018-22465-910.1038/s41598-018-22465-9584036029511259Search in Google Scholar

Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, Schwecke T, Herfort S, Lasch P, Borriss R. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014 May 15;196(10):1842–1852. https://doi.org/10.1128/JB.01474-14ScholzRVaterJBudiharjoAWangZHeYDietelKSchweckeTHerfortSLaschPBorrissR. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014May15;196(10):18421852. https://doi.org/10.1128/JB.01474-1410.1128/JB.01474-14401100824610713Search in Google Scholar

Shanker E, Federle M. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel). 2017 Jan 05;8(1):15. https://doi.org/10.3390/genes8010015ShankerEFederleM. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes (Basel). 2017Jan05;8(1):15. https://doi.org/10.3390/genes801001510.3390/genes8010015529501028067778Search in Google Scholar

Shi F, Wang Y, Li Y, Wang X. Mode of action of leucocin K7 produced by Leuconostoc mesenteroides K7 against Listeria monocytogenes and its potential in milk preservation. Biotechnol Lett. 2016 Sep;38(9):1551–1557. https://doi.org/10.1007/s10529-016-2127-yShiFWangYLiYWangX. Mode of action of leucocin K7 produced by Leuconostoc mesenteroides K7 against Listeria monocytogenes and its potential in milk preservation. Biotechnol Lett. 2016Sep;38(9):15511557. https://doi.org/10.1007/s10529-016-2127-y10.1007/s10529-016-2127-y27193759Search in Google Scholar

Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol. 2016 Jun;120(6):1449–1465. https://doi.org/10.1111/jam.13033ShinJMGwakJWKamarajanPFennoJCRickardAHKapilaYL. Biomedical applications of nisin. J Appl Microbiol. 2016Jun;120(6):14491465. https://doi.org/10.1111/jam.1303310.1111/jam.13033486689726678028Search in Google Scholar

Silva CCG, Silva SPM, Ribeiro SC. Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol. 2018 Apr 9;9:594. https://doi.org/10.3389/fmicb.2018.00594SilvaCCGSilvaSPMRibeiroSC. Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol. 2018Apr9;9:594. https://doi.org/10.3389/fmicb.2018.0059410.3389/fmicb.2018.00594590000929686652Search in Google Scholar

Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020 Apr 27;8(5):639. https://doi.org/10.3390/microorganisms8050639SimonsAAlhanoutKDuvalRE. Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020Apr27;8(5):639. https://doi.org/10.3390/microorganisms805063910.3390/microorganisms8050639728507332349409Search in Google Scholar

Sindhu SS, Sehrawat A, Sharma R, Dahiya A. Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Def Life Sci J. 2016 Oct 07;1(2):135–148. https://doi.org/10.14429/dlsj.1.10747SindhuSSSehrawatASharmaRDahiyaA. Biopesticides: use of rhizosphere bacteria for biological control of plant pathogens. Def Life Sci J. 2016Oct07;1(2):135148. https://doi.org/10.14429/dlsj.1.1074710.14429/dlsj.1.10747Search in Google Scholar

Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. 2021. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. EMS Microbiol Rev. 2021 Jan 8;45(1):fuaa039. https://doi.org/10.1093/femsre/fuaa039SoltaniSHammamiRCotterPDRebuffatSSaidLBGaudreauHBédardFBironEDriderDFlissI. 2021. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. EMS Microbiol Rev. 2021Jan8;45(1):fuaa039. https://doi.org/10.1093/femsre/fuaa03910.1093/femsre/fuaa039779404532876664Search in Google Scholar

Stoyanova LG, Ustyugova EA, Netrusov AI. Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Appl Biochem Microbiol. 2012 May;48(3):229–243. https://doi.org/10.1134/S0003683812030143StoyanovaLGUstyugovaEANetrusovAI. Antibacterial metabolites of lactic acid bacteria: their diversity and properties. Appl Biochem Microbiol. 2012May;48(3):229243. https://doi.org/10.1134/S000368381203014310.1134/S0003683812030143Search in Google Scholar

Subramanian S, Smith DL. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front Plant Sci. 2015 Oct 30;6:909. https://doi.org/10.3389/fpls.2015.00909SubramanianSSmithDL. Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front Plant Sci. 2015Oct30;6:909. https://doi.org/10.3389/fpls.2015.0090910.3389/fpls.2015.00909462656326579159Search in Google Scholar

Sun Z, Wang X, Zhang X, Wu H, Zou Y, Li P, Sun C, Xu W, Liu F, Wang D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J Ind Microbiol Biotechnol. 2018 Mar 01;45(3):213–227. https://doi.org/10.1007/s10295-018-2008-6SunZWangXZhangXWuHZouYLiPSunCXuWLiuFWangD. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J Ind Microbiol Biotechnol. 2018Mar01;45(3):213227. https://doi.org/10.1007/s10295-018-2008-610.1007/s10295-018-2008-629349568Search in Google Scholar

Teneva-Angelova T, Hristova I, Pavlov A, Beshkova D. Chapter 4 – Lactic acid bacteria – From nature through food to health. In: Holban AM, Grumezescu AM, editors. Handbook of Food Bioengineering, Advances in Biotechnology for Food Industry. Cambridge (USA): Academic Press; 2018. p. 91–133. https://doi.org/10.1016/B978-0-12-811443-8.00004-9Teneva-AngelovaTHristovaIPavlovABeshkovaD. Chapter 4 – Lactic acid bacteria – From nature through food to health. In: HolbanAMGrumezescuAM, editors. Handbook of Food Bioengineering, Advances in Biotechnology for Food Industry. Cambridge (USA): Academic Press; 2018. p. 91133. https://doi.org/10.1016/B978-0-12-811443-8.00004-910.1016/B978-0-12-811443-8.00004-9Search in Google Scholar

Todorov SD. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol. 2008 Mar;39(1):178–187. https://doi.org/10.1590/S1517-83822008000100035TodorovSD. Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol. 2008Mar;39(1):178187. https://doi.org/10.1590/S1517-8382200800010003510.1590/S1517-83822008000100035Search in Google Scholar

Turovskiy Y, Ludescher RD, Aroutcheva AA, Faro S, Chikindas ML. Lactocin 160, a bacteriocin produced by vaginal Lactobacillus rhamnosus, targets cytoplasmic membranes of the vaginal pathogen, Gardnerella vaginalis. Probiotics Antimicrob Proteins. 2009 Jun;1(1):67–74. https://doi.org/10.1007/s12602-008-9003-6TurovskiyYLudescherRDAroutchevaAAFaroSChikindasML. Lactocin 160, a bacteriocin produced by vaginal Lactobacillus rhamnosus, targets cytoplasmic membranes of the vaginal pathogen, Gardnerella vaginalis. Probiotics Antimicrob Proteins. 2009Jun;1(1):6774. https://doi.org/10.1007/s12602-008-9003-610.1007/s12602-008-9003-6286305620445810Search in Google Scholar

Um S, Kim YJ, Kwon H, Wen H, Kim SH, Kwon HC, Park S, Shin J, Oh DC. Sungsanpin, a lasso peptide from a deep-sea streptomycete. J Nat Prod. 2013 May 24;76(5):873–879. https://doi.org/10.1021/np300902gUmSKimYJKwonHWenHKimSHKwonHCParkSShinJOhDC. Sungsanpin, a lasso peptide from a deep-sea streptomycete. J Nat Prod. 2013May24;76(5):873879. https://doi.org/10.1021/np300902g10.1021/np300902g23662937Search in Google Scholar

van Staden ADP, Heunis T, Smith C, Deane S, Dicks LMT. Efficacy of lantibiotic treatment of Staphylococcus aureus-induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrob Agents Chemother. 2016 Jul;60(7):3948–3955. https://doi.org/10.1128/AAC.02938-15van StadenADPHeunisTSmithCDeaneSDicksLMT. Efficacy of lantibiotic treatment of Staphylococcus aureus-induced skin infections, monitored by in vivo bioluminescent imaging. Antimicrob Agents Chemother. 2016Jul;60(7):39483955. https://doi.org/10.1128/AAC.02938-1510.1128/AAC.02938-15491467827067340Search in Google Scholar

Veening JW, Blokesch M. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol. 2017 Oct;15(10):621–629. https://doi.org/10.1038/nrmicro.2017.66VeeningJWBlokeschM. Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol. 2017Oct;15(10):621629. https://doi.org/10.1038/nrmicro.2017.6610.1038/nrmicro.2017.6628690319Search in Google Scholar

Vijay Simha B, Sood SK, Kumariya R, Garsa AK. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol Res. 2012 Oct;167(9):544–549. https://doi.org/10.1016/j.micres.2012.01.001Vijay SimhaBSoodSKKumariyaRGarsaAK. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol Res. 2012Oct;167(9):544549. https://doi.org/10.1016/j.micres.2012.01.00110.1016/j.micres.2012.01.00122277956Search in Google Scholar

Villarante KI, Elegado FB, Iwatani S, Zendo T, Sonomoto K, de Guzman EE. Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2–3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World J Microbiol Biotechnol. 2011 Apr; 27(4):975–980. https://doi.org/10.1007/s11274-010-0541-1VillaranteKIElegadoFBIwataniSZendoTSonomotoKde GuzmanEE. Purification, characterization and in vitro cytotoxicity of the bacteriocin from Pediococcus acidilactici K2a2–3 against human colon adenocarcinoma (HT29) and human cervical carcinoma (HeLa) cells. World J Microbiol Biotechnol. 2011Apr; 27(4):975980. https://doi.org/10.1007/s11274-010-0541-110.1007/s11274-010-0541-1Search in Google Scholar

Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel). 2019 Jan 03;11(1):38. https://doi.org/10.3390/cancers11010038VivarelliSSalemiRCandidoSFalzoneLSantagatiMStefaniSTorinoFBannaGLToniniGLibraM. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel). 2019Jan03;11(1):38. https://doi.org/10.3390/cancers1101003810.3390/cancers11010038635646130609850Search in Google Scholar

Yang SC, Lin CH, Sung CT, Fang JY. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 2014 May 26;5:241. https://doi.org/10.3389/fmicb.2014.00241YangSCLinCHSungCTFangJY. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 2014May26;5:241. https://doi.org/10.3389/fmicb.2014.0024110.3389/fmicb.2014.00241403361224904554Search in Google Scholar

Yao GW, Duarte I, Le TT, Carmody L, LiPuma JJ, Young R, Gonzalez CF. A broad-host-range tailocin from Burkholderia cenocepacia. Appl Environ Microbiol. 2017 May 15;83(10):e03414-16. https://doi.org/10.1128/AEM.03414-16YaoGWDuarteILeTTCarmodyLLiPumaJJYoungRGonzalezCF. A broad-host-range tailocin from Burkholderia cenocepacia. Appl Environ Microbiol. 2017May15;83(10):e03414-16. https://doi.org/10.1128/AEM.03414-1610.1128/AEM.03414-16541151328258146Search in Google Scholar

Zelezetsky I, Tossi A. Alpha-helical antimicrobial peptides – using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta (BBA) – Biomembranes. 2006 Sep;1758(9): 1436–1449. https://doi.org/10.1016/j.bbamem.2006.03.021ZelezetskyITossiA. Alpha-helical antimicrobial peptides – using a sequence template to guide structure-activity relationship studies. Biochim Biophys Acta (BBA) – Biomembranes. 2006Sep;1758(9): 14361449. https://doi.org/10.1016/j.bbamem.2006.03.02110.1016/j.bbamem.2006.03.02116678118Search in Google Scholar

Zhang ZF, Kim IH. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult Sci. 2014 Feb;93(2):364–370. https://doi.org/10.3382/ps.2013-03314ZhangZFKimIH. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult Sci. 2014Feb;93(2):364370. https://doi.org/10.3382/ps.2013-0331410.3382/ps.2013-0331424570458Search in Google Scholar

Zhou W, Wang G, Wang C, Ren F, Hao Y. Both IIC and IID components of mannose phosphotransferase system are involved in the specific recognition between immunity protein PedB and bacteriocin-receptor complex. PLoS One. 2016 Oct 24;11(10):e0164973. https://doi.org/10.1371/journal.pone.0164973ZhouWWangGWangCRenFHaoY. Both IIC and IID components of mannose phosphotransferase system are involved in the specific recognition between immunity protein PedB and bacteriocin-receptor complex. PLoS One. 2016Oct24;11(10):e0164973. https://doi.org/10.1371/journal.pone.016497310.1371/journal.pone.0164973507712727776158Search in Google Scholar

eISSN:
2544-4646
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology