INFORMAZIONI SU QUESTO ARTICOLO

Cita

Al-Amri AI, Botta GA, Tabbara KS, Ismaeel AY, Al-Mahmeed AE, Qareeballa AY, Bin Dayna KM, Bakhiet MO. Campylobacter jejuni induces diverse kinetics and profiles of cytokine genes in INT-407 cells. Saudi Med J. 2008 Apr;29(4):514–519.Al-AmriAIBottaGATabbaraKSIsmaeelAYAl-MahmeedAEQareeballaAYBin DaynaKMBakhietMO. Campylobacter jejuni induces diverse kinetics and profiles of cytokine genes in INT-407 cells. Saudi Med J.2008Apr;29(4):514519.Search in Google Scholar

Al-Salloom FS, Al Mahmeed A, Ismaeel A, Botta GA, Bakhiet M. Campylobacter-stimulated INT407 cells produce dissociated cytokine profiles. J Infect. 2003 Oct;47(3):217–224. https://doi.org/10.1016/S0163-4453(03)00076-8Al-SalloomFSAl MahmeedAIsmaeelABottaGABakhietM. Campylobacter-stimulated INT407 cells produce dissociated cytokine profiles. J Infect.2003Oct;47(3):217224. https://doi.org/10.1016/S0163-4453(03)00076-810.1016/S0163-4453(03)00076-8Search in Google Scholar

Amjadi F, Salehi E, Mehdizadeh M, Aflatoonian R. Role of the innate immunity in female reproductive tract. Adv Biomed Res. 2014 Jan 9;3:1. https://doi.org/10.4103/2277-9175.124626AmjadiFSalehiEMehdizadehMAflatoonianR. Role of the innate immunity in female reproductive tract. Adv Biomed Res.2014Jan 9;3:1. https://doi.org/10.4103/2277-9175.12462610.4103/2277-9175.124626392884224592358Search in Google Scholar

Arce C, Ramírez-Boo M, Lucena C, Garrido JJ. Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium. Comp Immunol Microbiol Infect Dis. 2010a Mar;33(2):161–174. https://doi.org/10.1016/j.cimid.2008.08.003ArceCRamírez-BooMLucenaCGarridoJJ. Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium. Comp Immunol Microbiol Infect Dis.2010aMar;33(2):161174. https://doi.org/10.1016/j.cimid.2008.08.00310.1016/j.cimid.2008.08.00318799216Search in Google Scholar

Arce RM, Diaz PI, Barros SP, Galloway P, Bobetsis Y, Threadgill D, Offenbacher S. Characterization of the invasive and inflammatory traits of oral Campylobacter rectus in a murine model of fetoplacental growth restriction and in trophoblast cultures. J Reprod Immunol. 2010b Mar;84(2):145–153 https://doi.org/10.1016/j.jri.2009.11.003ArceRMDiazPIBarrosSPGallowayPBobetsisYThreadgillDOffenbacherS. Characterization of the invasive and inflammatory traits of oral Campylobacter rectus in a murine model of fetoplacental growth restriction and in trophoblast cultures. J Reprod Immunol.2010bMar;84(2):145153https://doi.org/10.1016/j.jri.2009.11.00310.1016/j.jri.2009.11.003290460320089314Search in Google Scholar

Baker NT, Graham LL. Campylobacter fetus translocation across Caco-2 cell monolayers. Microb Pathog. 2010 Nov;49(5):260–272. https://doi.org/10.1016/j.micpath.2010.06.008BakerNTGrahamLL. Campylobacter fetus translocation across Caco-2 cell monolayers. Microb Pathog.2010Nov;49(5):260272. https://doi.org/10.1016/j.micpath.2010.06.00810.1016/j.micpath.2010.06.00820600794Search in Google Scholar

Blaser MJ, Smith PF, Hopkins JA, Heinzer I, Bryner JH, Wang WL. Pathogenesis of Campylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins. J Infect Dis. 1987 Apr;155(4):696–706. https://doi.org/10.1093/infdis/155.4.696BlaserMJSmithPFHopkinsJAHeinzerIBrynerJHWangWL. Pathogenesis of Campylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins. J Infect Dis.1987Apr;155(4):696706. https://doi.org/10.1093/infdis/155.4.69610.1093/infdis/155.4.6963819475Search in Google Scholar

Blaser MJ. Role of the S-layer proteins of Campylobacter fetus in serum-resistance and antigenic variation: a model of bacterial pathogenesis. Am J Med Sci. 1993 Nov;306(5):325–329. https://doi.org/10.1097/00000441-199311000-00011BlaserMJ. Role of the S-layer proteins of Campylobacter fetus in serum-resistance and antigenic variation: a model of bacterial pathogenesis. Am J Med Sci.1993Nov;306(5):325329. https://doi.org/10.1097/00000441-199311000-0001110.1097/00000441-199311000-000118238090Search in Google Scholar

Botteldoorn N, Van Coillie E, Grijspeerdt K, Werbrouck H, Haesebrouck F, Donné E, D’Haese E, Heyndrickx M, Pasmans F, Herman L. Real-time reverse transcription PCR for the quantification of the mntH expression of Salmonella enterica as a function of growth phase and phagosome-like conditions. J Microbiol Methods. 2006 Jul;66(1):125–135. https://doi.org/10.1016/j.mimet.2005.11.003BotteldoornNVan CoillieEGrijspeerdtKWerbrouckHHaesebrouckFDonnéED’HaeseEHeyndrickxMPasmansFHermanL. Real-time reverse transcription PCR for the quantification of the mntH expression of Salmonella enterica as a function of growth phase and phagosome-like conditions. J Microbiol Methods.2006Jul;66(1):125135. https://doi.org/10.1016/j.mimet.2005.11.00310.1016/j.mimet.2005.11.00316378650Search in Google Scholar

Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J. 2005 Jun;19(8):923–933. https://doi.org/10.1096/fj.04-3260comBruewerMUtechMIvanovAIHopkinsAMParkosCANusratA. Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J.2005Jun;19(8):923933. https://doi.org/10.1096/fj.04-3260com10.1096/fj.04-3260com15923402Search in Google Scholar

Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev. 2015;67(2):462–504. https://doi.org/10.1124/pr.114.009928BryantCEOrrSFergusonBSymmonsMFBoyleJPMonieTP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev.2015;67(2):462504. https://doi.org/10.1124/pr.114.00992810.1124/pr.114.009928439468625829385Search in Google Scholar

Bücker R, Krug SM, Fromm A, Nielsen HL, Fromm M, Nielsen H, Schulzke JD. Campylobacter fetus impairs barrier function in HT-29/B6 cells through focal tight junction alterations and leaks. Ann N Y Acad Sci. 2017 Oct;1405(1):189–201. https://doi.org/10.1111/nyas.13406BückerRKrugSMFrommANielsenHLFrommMNielsenHSchulzkeJD. Campylobacter fetus impairs barrier function in HT-29/B6 cells through focal tight junction alterations and leaks. Ann N Y Acad Sci.2017Oct;1405(1):189201. https://doi.org/10.1111/nyas.1340610.1111/nyas.1340628662272Search in Google Scholar

Cagnoli CI, Chiapparrone ML, Cacciato CS, Rodríguez MG, Aller JF, Catena MDC. Effects of Campylobacter fetus on bull sperm quality. Microb Pathog. 2020 Dec;149:104486. https://doi.org/10.1016/j.micpath.2020.104486CagnoliCIChiapparroneMLCacciatoCSRodríguezMGAllerJFCatenaMDC. Effects of Campylobacter fetus on bull sperm quality. Microb Pathog.2020Dec;149:104486. https://doi.org/10.1016/j.micpath.2020.10448610.1016/j.micpath.2020.10448632916242Search in Google Scholar

Campos-Múzquiz LG, Méndez-Olvera ET, Arellano-Reynoso B, Martínez-Gómez D. Campylobacter fetus is internalized by bovine endometrial epithelial cells. Pol J Microbiol. 2019;68(2):217–224. https://doi.org/10.33073/pjm-2019-022Campos-MúzquizLGMéndez-OlveraETArellano-ReynosoBMartínez-GómezD. Campylobacter fetus is internalized by bovine endometrial epithelial cells. Pol J Microbiol.2019;68(2):217224. https://doi.org/10.33073/pjm-2019-02210.33073/pjm-2019-022725675931250592Search in Google Scholar

Cipolla AL, Casaro AP, Terzolo HR, Estela ES, Brooks BW, Garcia MM. Persistence of Campylobacter fetus subspecies venerealis in experimentally infected heifers. Vet Rec. 1994 Jun 11;134(24):628. https://doi.org/10.1136/vr.134.24.628CipollaALCasaroAPTerzoloHREstelaESBrooksBWGarciaMM. Persistence of Campylobacter fetus subspecies venerealis in experimentally infected heifers. Vet Rec.1994Jun 11;134(24):628. https://doi.org/10.1136/vr.134.24.62810.1136/vr.134.24.6287941265Search in Google Scholar

Cronin JG, Turner ML, Goetze L, Bryant CE, Sheldon IM. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biol Reprod. 2012 Feb 29;86(2):1–9. https://doi.org/10.1095/biolreprod.111.092718CroninJGTurnerMLGoetzeLBryantCESheldonIM. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biol Reprod.2012Feb 29;86(2):19. https://doi.org/10.1095/biolreprod.111.09271810.1095/biolreprod.111.092718439670322053092Search in Google Scholar

Eucker TP, Samuelson DR, Hunzicker-Dunn M, Konkel ME. The focal complex of epithelial cells provides a signalling platform for interleukin-8 induction in response to bacterial pathogens. Cell Microbiol. 2014 Sep;16(9):1441–1455. https://doi.org/10.1111/cmi.12305EuckerTPSamuelsonDRHunzicker-DunnMKonkelME. The focal complex of epithelial cells provides a signalling platform for interleukin-8 induction in response to bacterial pathogens. Cell Microbiol.2014Sep;16(9):14411455. https://doi.org/10.1111/cmi.1230510.1111/cmi.12305414665624779413Search in Google Scholar

Fogg GC, Yang LY, Wang E, Blaser MJ. Surface array proteins of Campylobacter fetus block lectin-mediated binding to type A lipopolysaccharide. Infect Immun. 1990 Sep;58(9):2738–2744. https://doi.org/10.1128/IAI.58.9.2738-2744.1990FoggGCYangLYWangEBlaserMJ. Surface array proteins of Campylobacter fetus block lectin-mediated binding to type A lipopolysaccharide. Infect Immun.1990Sep;58(9):27382744. https://doi.org/10.1128/IAI.58.9.2738-2744.199010.1128/iai.58.9.2738-2744.19903135612387622Search in Google Scholar

Foley C, Chapwanya A, Creevey CJ, Narciandi F, Morris D, Kenny EM, Cormican P, Callanan JJ, O’Farrelly C, Meade KG. Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics. 2012 Sep 18;13:489. https://doi.org/10.1186/1471-2164-13-489FoleyCChapwanyaACreeveyCJNarciandiFMorrisDKennyEMCormicanPCallananJJO’FarrellyCMeadeKG. Global endometrial transcriptomic profiling: transient immune activation precedes tissue proliferation and repair in healthy beef cows. BMC Genomics.2012Sep 18;13:489. https://doi.org/10.1186/1471-2164-13-48910.1186/1471-2164-13-489354456722985206Search in Google Scholar

Healy LL, Cronin JG, Sheldon IM. Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1. Sci Rep. 2014 Nov 14;4:7060. https://doi.org/10.1038/srep07060HealyLLCroninJGSheldonIM. Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1. Sci Rep.2014Nov 14;4:7060. https://doi.org/10.1038/srep0706010.1038/srep07060423132325395028Search in Google Scholar

Hoeksema MA, Scicluna BP, Boshuizen MC, van der Velden S, Neele AE, Van den Bossche J, Matlung HL, van den Berg TK, Goossens P, de Winther MP. IFN-γ priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment. J Immunol. 2015 Apr 15;194(8):3909–3916. https://doi.org/10.4049/jimmunol.1402077HoeksemaMASciclunaBPBoshuizenMCvan der VeldenSNeeleAEVan den BosscheJMatlungHLvan den BergTKGoossensPde WintherMP. IFN-γ priming of macrophages represses a part of the inflammatory program and attenuates neutrophil recruitment. J Immunol.2015Apr 15;194(8):39093916. https://doi.org/10.4049/jimmunol.140207710.4049/jimmunol.140207725750432Search in Google Scholar

Hu GQ, Song PX, Chen W, Qi S, Yu SX, Du CT, Deng XM, Ouyang HS, Yang YJ. Cirtical role for Salmonella effector SopB in regulating inflammasome activation. Mol Immunol. 2017 Oct;90: 280–286. https://doi.org/10.1016/j.molimm.2017.07.011HuGQSongPXChenWQiSYuSXDuCTDengXMOuyangHSYangYJ. Cirtical role for Salmonella effector SopB in regulating inflammasome activation. Mol Immunol.2017Oct;90: 280286. https://doi.org/10.1016/j.molimm.2017.07.01110.1016/j.molimm.2017.07.01128846926Search in Google Scholar

Iraola G, Hernández M, Calleros L, Paolicchi F, Silveyra S, Velilla A, Carretto L, Rodríguez E, Pérez R. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses. J Vet Sci. 2012 Dec;13(4):371–376. https://doi.org/10.4142/jvs.2012.13.4.371IraolaGHernándezMCallerosLPaolicchiFSilveyraSVelillaACarrettoLRodríguezEPérezR. Application of a multiplex PCR assay for Campylobacter fetus detection and subspecies differentiation in uncultured samples of aborted bovine fetuses. J Vet Sci.2012Dec;13(4):371376. https://doi.org/10.4142/jvs.2012.13.4.37110.4142/jvs.2012.13.4.371353912223271178Search in Google Scholar

Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015 Apr;16(4):343–353. https://doi.org/10.1038/ni.3123IwasakiAMedzhitovR. Control of adaptive immunity by the innate immune system. Nat Immunol.2015Apr;16(4):343353. https://doi.org/10.1038/ni.312310.1038/ni.3123450749825789684Search in Google Scholar

Kaneko Y, Day ML, Murphy CR. Uterine epithelial cells: Serving two masters. Int J Biochem Cell Biol. 2013 Feb;45(2):359–363. https://doi.org/10.1016/j.biocel.2012.10.012KanekoYDayMLMurphyCR. Uterine epithelial cells: Serving two masters. Int J Biochem Cell Biol.2013Feb;45(2):359363. https://doi.org/10.1016/j.biocel.2012.10.01210.1016/j.biocel.2012.10.01223116974Search in Google Scholar

Kienesberger S, Sprenger H, Wolfgruber S, Halwachs B, Thallinger GG, Perez-Perez GI, Blaser MJ, Zechner EL, Gorkiewicz G. Comparative genome analysis of Campylobacter fetus subspecies revealed horizontally acquired genetic elements important for virulence and niche specificity. PLoS One. 2014 Jan 9;9(1):e85491. https://doi.org/10.1371/journal.pone.0085491KienesbergerSSprengerHWolfgruberSHalwachsBThallingerGGPerez-PerezGIBlaserMJZechnerELGorkiewiczG. Comparative genome analysis of Campylobacter fetus subspecies revealed horizontally acquired genetic elements important for virulence and niche specificity. PLoS One.2014Jan 9;9(1):e85491. https://doi.org/10.1371/journal.pone.008549110.1371/journal.pone.0085491388704924416416Search in Google Scholar

LaRock DL, Chaudhary A, Miller SI. Salmonellae interactions with host processes. Nat Rev Microbiol. 2015 Apr;13(4):191–205. https://doi.org/10.1038/nrmicro3420LaRockDLChaudharyAMillerSI. Salmonellae interactions with host processes. Nat Rev Microbiol.2015Apr;13(4):191205. https://doi.org/10.1038/nrmicro342010.1038/nrmicro3420507453725749450Search in Google Scholar

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. https://doi.org/10.1006/meth.2001.1262LivakKJSchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods.2001;25(4):402408. https://doi.org/10.1006/meth.2001.126210.1006/meth.2001.126211846609Search in Google Scholar

Man SM, Kaakoush NO, Leach ST, Nahidi L, Lu HK, Norman J, Day AS, Zhang L, Mitchell HM. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J Infect Dis. 2010 Dec 15;202(12):1855–1865. https://doi.org/10.1086/657316ManSMKaakoushNOLeachSTNahidiLLuHKNormanJDayASZhangLMitchellHM. Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J Infect Dis.2010Dec 15;202(12):18551865. https://doi.org/10.1086/65731610.1086/65731621050118Search in Google Scholar

Méndez-Samperio P, García E, Vázquez A, Palma J. Regulation of interleukin-8 by interleukin-10 and transforming growth factor beta in human monocytes infected with Mycobacterium bovis. Clin Diagn Lab Immunol. 2002 Jul;9(4):802–807. https://doi.org/10.1128/cdli.9.4.802-807.2002Méndez-SamperioPGarcíaEVázquezAPalmaJ. Regulation of interleukin-8 by interleukin-10 and transforming growth factor beta in human monocytes infected with Mycobacterium bovis. Clin Diagn Lab Immunol.2002Jul;9(4):802807. https://doi.org/10.1128/cdli.9.4.802-807.200210.1128/CDLI.9.4.802-807.2002Search in Google Scholar

Moran AP, Penner JL, Aspinall GO. Campylobacter lipopolysaccharides. In: Nachamkin I, Blaser M, editors. Campylobacter. 2nd ed. Washington DC (USA): ASM Press; 2002.MoranAPPennerJLAspinallGO. Campylobacter lipopolysaccharides. In: NachamkinIBlaserM, editors. Campylobacter. 2nd ed.Washington DC (USA): ASM Press; 2002.Search in Google Scholar

Mshelia GD, Amin JD, Woldehiwet Z, Murray RD, Egwu GO. Epidemiology of bovine venereal campylobacteriosis: geographic distribution and recent advances in molecular diagnostic techniques. Reprod Domest Anim. 2010 Oct;45(5):e221–e230. https://doi.org/10.1111/j.1439-0531.2009.01546.xMsheliaGDAminJDWoldehiwetZMurrayRDEgwuGO. Epidemiology of bovine venereal campylobacteriosis: geographic distribution and recent advances in molecular diagnostic techniques. Reprod Domest Anim.2010Oct;45(5):e221e230. https://doi.org/10.1111/j.1439-0531.2009.01546.x10.1111/j.1439-0531.2009.01546.x19929895Search in Google Scholar

Pham OH, McSorley SJ. Protective host immune responses to Salmonella infection. Future Microbiol. 2015;10(1):101–110. https://doi.org/10.2217/fmb.14.98PhamOHMcSorleySJ. Protective host immune responses to Salmonella infection. Future Microbiol.2015;10(1):101110. https://doi.org/10.2217/fmb.14.9810.2217/fmb.14.98Search in Google Scholar

Preston MA, Penner JL. Structural and antigenic properties of lipopolysaccharides from serotype reference strains of Campylobacter jejuni. Infect Immun. 1987 Aug;55(8):1806–1812. https://doi.org/10.1128/IAI.55.8.1806-1812.1987PrestonMAPennerJL. Structural and antigenic properties of lipopolysaccharides from serotype reference strains of Campylobacter jejuni. Infect Immun.1987Aug;55(8):18061812. https://doi.org/10.1128/IAI.55.8.1806-1812.198710.1128/iai.55.8.1806-1812.1987Search in Google Scholar

Rees LE, Cogan TA, Dodson AL, Birchall MA, Bailey M, Humphrey TJ. Campylobacter and IFNγ interact to cause a rapid loss of epithelial barrier integrity. Inflamm Bowel Dis. 2008 Mar; 14(3): 303–309. https://doi.org/10.1002/ibd.20325ReesLECoganTADodsonALBirchallMABaileyMHumphreyTJ. Campylobacter and IFNγ interact to cause a rapid loss of epithelial barrier integrity. Inflamm Bowel Dis.2008Mar; 14(3): 303309. https://doi.org/10.1002/ibd.2032510.1002/ibd.20325Search in Google Scholar

Rolhion N, Furniss RC, Grabe G, Ryan A, Liu M, Matthews SA, Holden DW. Inhibition of nuclear transport of NF-ĸB p65 by the Salmonella Type III secretion system effector SpvD. PLoS Pathog. 2016 May 27;12(5):e1005653. https://doi.org/10.1371/journal.ppat.1005653RolhionNFurnissRCGrabeGRyanALiuMMatthewsSAHoldenDW. Inhibition of nuclear transport of NF-ĸB p65 by the Salmonella Type III secretion system effector SpvD. PLoS Pathog.2016May 27;12(5):e1005653. https://doi.org/10.1371/journal.ppat.100565310.1371/journal.ppat.1005653Search in Google Scholar

Rubtsova SN, Kondratov RV, Kopnin PB, Chumakov PM, Kopnin BP, Vasiliev JM. Disruption of actin microfilaments by cytochalasin D leads to activation of p53. FEBS Lett. 1998 Jul 3; 430(3):353–357. https://doi.org/10.1016/s0014-5793(98)00692-9RubtsovaSNKondratovRVKopninPBChumakovPMKopninBPVasilievJM. Disruption of actin microfilaments by cytochalasin D leads to activation of p53. FEBS Lett.1998Jul 3; 430(3):353357. https://doi.org/10.1016/s0014-5793(98)00692-910.1016/S0014-5793(98)00692-9Search in Google Scholar

Salama SM, Newnham E, Chang N, Taylor DE. Genome map of Campylobacter fetus subsp. fetus ATCC 27374. FEMS Microbiol Lett. 1995 Oct 15;132(3):239–245. https://doi.org/10.1016/0378-1097(95)00316-wSalamaSMNewnhamEChangNTaylorDE. Genome map of Campylobacter fetus subsp. fetus ATCC 27374. FEMS Microbiol Lett.1995Oct 15;132(3):239245. https://doi.org/10.1016/0378-1097(95)00316-w10.1111/j.1574-6968.1995.tb07840.xSearch in Google Scholar

Sammar M, Siwetz M, Meiri H, Fleming V, Altevogt P, Huppertz B. Expression of CD24 and Siglec-10 in first trimester placenta: implications for immune tolerance at the fetal-maternal interface. Histochem Cell Biol. 2017 May;147(5):565–574. https://doi.org/10.1007/s00418-016-1531-7SammarMSiwetzMMeiriHFlemingVAltevogtPHuppertzB. Expression of CD24 and Siglec-10 in first trimester placenta: implications for immune tolerance at the fetal-maternal interface. Histochem Cell Biol.2017May;147(5):565574. https://doi.org/10.1007/s00418-016-1531-710.1007/s00418-016-1531-728012129Search in Google Scholar

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73SchmittgenTDLivakKJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc.2008;3(6):11011108. https://doi.org/10.1038/nprot.2008.7310.1038/nprot.2008.7318546601Search in Google Scholar

Shaughnessy RG, Meade KG, Cahalane S, Allan B, Reiman C, Callanan JJ, O’Farrelly C. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet Immunol Immunopathol. 2009 Dec 15;132 (2–4): 191–198. https://doi.org/10.1016/j.vetimm.2009.06.007ShaughnessyRGMeadeKGCahalaneSAllanBReimanCCallananJJO’FarrellyC. Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet Immunol Immunopathol.2009Dec 15;132 (2–4): 191198. https://doi.org/10.1016/j.vetimm.2009.06.00710.1016/j.vetimm.2009.06.00719632728Search in Google Scholar

Skarzynski DJ, Miyamoto Y, Okuda K. Production of prostaglandin F2α by cultured bovine endometrial cells in response to tumor necrosis factor α: cell type specificity and intracellular mechanisms. Biol Reprod. 2000 May;62(5):1116–1120. https://doi.org/10.1095/biolreprod62.5.1116SkarzynskiDJMiyamotoYOkudaK. Production of prostaglandin F by cultured bovine endometrial cells in response to tumor necrosis factor α: cell type specificity and intracellular mechanisms. Biol Reprod.2000May;62(5):11161120. https://doi.org/10.1095/biolreprod62.5.111610.1095/biolreprod62.5.111610775156Search in Google Scholar

Stephenson HN, Mills DC, Jones H, Milioris E, Copland A, Dorrell N, Wren BW, Crocker PR, Escors D, Bajaj-Elliott M. Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction. J Infect Dis. 2014 Nov 1;210(9):1487–1498. https://doi.org/10.1093/infdis/jiu287StephensonHNMillsDCJonesHMiliorisECoplandADorrellNWrenBWCrockerPREscorsDBajaj-ElliottM. Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction. J Infect Dis.2014Nov 1;210(9):14871498. https://doi.org/10.1093/infdis/jiu28710.1093/infdis/jiu287419544024823621Search in Google Scholar

Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010 Mar 19;140(6):805–820. https://doi.org/10.1016/j.cell.2010.01.022TakeuchiOAkiraS. Pattern recognition receptors and inflammation. Cell.2010Mar 19;140(6):805820. https://doi.org/10.1016/j.cell.2010.01.02210.1016/j.cell.2010.01.02220303872Search in Google Scholar

Turner ML, Cronin JG, Healey GD, Sheldon IM. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014 Apr;155(4):1453–1465. https://doi.org/10.1210/en.2013-1822TurnerMLCroninJGHealeyGDSheldonIM. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology.2014Apr;155(4):14531465. https://doi.org/10.1210/en.2013-182210.1210/en.2013-1822395960824437488Search in Google Scholar

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002 Jun 18;3(7):research0034. https://doi.org/10.1186/gb-2002-3-7-research0034VandesompeleJDe PreterKPattynFPoppeBVan RoyNDe PaepeASpelemanF. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol.2002Jun 18;3(7):research0034. https://doi.org/10.1186/gb-2002-3-7-research003410.1186/gb-2002-3-7-research003412623912184808Search in Google Scholar

Viejo G, Gomez B, De Miguel D, Del Valle A, Otero L, De La Iglesia P. Campylobacter fetus subspecies fetus bacteremia associated with chorioamnionitis and intact fetal membranes. Scand J Infect Dis. 2001;33(2):126–127. https://doi.org/10.1080/003655401750065517ViejoGGomezBDe MiguelDDel ValleAOteroLDe La IglesiaP. Campylobacter fetus subspecies fetus bacteremia associated with chorioamnionitis and intact fetal membranes. Scand J Infect Dis.2001;33(2):126127. https://doi.org/10.1080/00365540175006551710.1080/00365540175006551711233847Search in Google Scholar

Wang B, Kraig E, Kolodrubetz D. Use of defined mutants to assess the role of the Campylobacter rectus S-layer in bacterium-epithelial cell interactions. Infect Immun. 2000 Mar;68(3):1465–1473. https://doi.org/10.1128/iai.68.3.1465-1473.2000WangBKraigEKolodrubetzD. Use of defined mutants to assess the role of the Campylobacter rectus S-layer in bacterium-epithelial cell interactions. Infect Immun.2000Mar;68(3):14651473. https://doi.org/10.1128/iai.68.3.1465-1473.200010.1128/IAI.68.3.1465-1473.20009730210678961Search in Google Scholar

Yin C, Xu L, Li Y, Liu Z, Gu D, Li Q, Jiao X. Construction of pSPI12-cured Salmonella enterica serovar Pullorum and identification of IpaJ as an immune response modulator. Avian Pathol. 2018 Aug;47(4):410–417. https://doi.org/10.1080/03079457.2018.1471195YinCXuLLiYLiuZGuDLiQJiaoX. Construction of pSPI12-cured Salmonella enterica serovar Pullorum and identification of IpaJ as an immune response modulator. Avian Pathol.2018Aug;47(4):410417. https://doi.org/10.1080/03079457.2018.147119510.1080/03079457.2018.147119529712441Search in Google Scholar

Yu ZT, Nanthakumar NN, Newburg DS. The human milk oligosaccharide 2’-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa. J Nutr. 2016 Oct;146(10):1980–1990. https://doi.org/10.3945/jn.116.230706YuZTNanthakumarNNNewburgDS. The human milk oligosaccharide 2’-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa. J Nutr.2016Oct;146(10):19801990. https://doi.org/10.3945/jn.116.23070610.3945/jn.116.230706503786827629573Search in Google Scholar

Zheng J, Meng J, Zhao S, Singh R, Song W. Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-κB. Infect Immun. 2008 Oct;76(10):4498–4508. https://doi.org/10.1128/IAI.01317-07ZhengJMengJZhaoSSinghRSongW. Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-κB. Infect Immun.2008Oct;76(10):44984508. https://doi.org/10.1128/IAI.01317-0710.1128/IAI.01317-07254682618644884Search in Google Scholar

eISSN:
2544-4646
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology